首页> 外文期刊>Energy & fuels >Hot Solvent Injection for Heavy Oil/Bitumen Recovery from Fractured Reservoirs: An Experimental Approach To Determine Optimal Application Conditions
【24h】

Hot Solvent Injection for Heavy Oil/Bitumen Recovery from Fractured Reservoirs: An Experimental Approach To Determine Optimal Application Conditions

机译:从裂隙油藏中热溶剂注入以开采重油/天然气:确定最佳应用条件的实验方法

获取原文
获取原文并翻译 | 示例
           

摘要

We conducted a series of dynamic experiments in which liquid solvent (heptane) was injected into heavy-oil saturated artificially fractured Berea sandstone samples with and without prethermal injection. To account for the effect of wettability on the process, experiments were repeated on the samples exposed to a wettability alteration (more oil-wet) process. Cores were saturated with heavy crude oil and placed inside a rubber sleeve. Next, the system was placed into an oven and maintained under constant temperature conditions. Then, either hot solvent (superheated to be in the vapor phase) or cold solvent was introduced into the system through the fracture at a constant rate. Pressure and temperature was continuously monitored at the inlet and center of the core. Properties of the oil and liquid condensate from the gas produced were measured and analyzed. This scheme was repeated for a wide range of temperature conditions. The retrieval of the solvent during the solvent injection phase and post-thermal method (steam or hot-water) injection performed for a wide range of temperature was monitored. Our results and observations indicate that the first requirement for a successful application is an effective solvent diffusion into matrix before it breaks through and improves the gravity drainage of oil by dilution. The second requirement is solvent retrieval. We also observed that a critical temperature and injection rate exists that yields a maximized oil recovery and solvent retrieval.
机译:我们进行了一系列动态实验,其中在有或没有预热注入的情况下,将液态溶剂(庚烷)注入重油饱和的人工压裂的Berea砂岩样品中。为了说明可湿性对过程的影响,对暴露于可湿性改变(更多油湿)过程的样品重复进行实验。堆芯用重质原油饱和,并置于橡胶套内。接下来,将系统放入烤箱中并保持在恒温条件下。然后,将热溶剂(过热至气相)或冷溶剂通过压裂以恒定速率引入系统中。在岩心的入口和中心连续监测压力和温度。测量并分析了产生的气体中的油和液体冷凝物的性质。在很宽的温度条件下重复此方案。在溶剂注入阶段和后加热方法(蒸汽或热水)注入过程中,对溶剂的回收情况进行了监测,检测温度范围很广。我们的结果和观察结果表明,成功应用的首要条件是有效的溶剂扩散到基体中,然后才能突破并通过稀释改善油的重力排放。第二个要求是溶剂回收。我们还观察到,存在一个临界温度和注入速率,可以最大限度地提高采油量和回收溶剂。

著录项

  • 来源
    《Energy & fuels》 |2016年第4期|2780-2790|共11页
  • 作者单位

    Univ Alberta, Donadeo Innovat Ctr Engn 7 277, Sch Min & Petr, Dept Civil & Environm Engn, 9211-116th St, Edmonton, AB T6G 1H9, Canada;

    Univ Alberta, Donadeo Innovat Ctr Engn 7 277, Sch Min & Petr, Dept Civil & Environm Engn, 9211-116th St, Edmonton, AB T6G 1H9, Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号