首页> 外文期刊>Energy & fuels >Process Integration of a Polygeneration Plant with Biomass/Coal Co-pyrolysis
【24h】

Process Integration of a Polygeneration Plant with Biomass/Coal Co-pyrolysis

机译:具有生物质/煤共热解的多联产工厂的工艺整合

获取原文
获取原文并翻译 | 示例
           

摘要

The concept of co-pyrolysis of biomass and conventional fossil fuel offers various advantages such as higher liquid product yield and higher char conversion than if the coal and biomass particles were processed individually. In the case of added value fuel production such as diesel and gasoline, the maximization of the fraction of pyrolysis oil is the foremost objective. At the same time, the produced char and permanent gases should be properly used for the isothermal and stable operation of the pyrolysis process. This study presents an integrated model of co-pyrolysis in ASPEN Plus for the production of advanced hydrocarbons aiming to determine the conditions under which the process performance is maximized. The methodology for the design and modeling of each main unit of the system (i.e., the pyrolysis plant, the oil upgrading unit, and char exploitation plant) is described in detail. Simulation runs were performed for various blending ratios from 0% to 100% of coal to biomass, aiming for the optimum design and operation scheme regarding (a) maximization of the yields of the desired products and (b) exploitation of the retrieved char. Simulation results revealed that high yields of hydrocarbons (up to 0.179 kg(HCs)/kg(feed)) can be produced due to the synergetic effects of co-pyrolysis of coal and biomass. Moreover, the total process efficiency when the rest of char is utilized for electricity and methanol production can reach at 55.5% and 61.9%, respectively. Finally, the energy balance calculations for the case of 60% coal blending ratio showed that almost 30% of the initial heat input is used as heat for pyrolysis and allothermal gasification of the char. Possible use of alternative heat sources, e.g., from solar energy for these two processes would further improve the system performance in terms of advanced fuels productivity.
机译:与单独处理煤和生物质颗粒相比,生物质和常规化石燃料共热解的概念具有各种优势,例如更高的液体产品收率和更高的焦炭转化率。对于增值燃料的生产,例如柴油和汽油,最大的目标是裂解油的比例最大化。同时,所产生的焦炭和永久气体应适当用于热解过程的等温和稳定运行。这项研究提出了ASPEN Plus中共热解的集成模型,用于生产高级烃,目的是确定工艺性能最大化的条件。详细介绍了系统每个主要单元(即热解装置,石油提质装置和焦炭开采装置)的设计和建模方法。针对从0%到100%的煤与生物质的各种混合比例进行了模拟运行,旨在针对(a)所需产品的产量最大化和(b)回收焦炭的利用的最佳设计和操作方案。模拟结果表明,由于煤和生物质共热解的协同作用,可以产生高产的碳氢化合物(最高0.179 kg(HCs)/ kg(进料))。此外,当将剩余的焦炭用于发电和甲醇生产时,总工艺效率分别可以达到55.5%和61.9%。最后,对于煤配比为60%的情况进行的能量平衡计算表明,几乎有30%的初始热量输入被用作焦炭的热解和变热气化的热量。就这两个过程而言,可能使用替代热源(例如太阳能)可以进一步提高系统性能,从而提高燃料生产率。

著录项

  • 来源
    《Energy & fuels》 |2017年第12期|14408-14422|共15页
  • 作者单位

    Ctr Res & Technol Hellas, Chem Proc & Energy Resources Inst, Thessaloniki 57001, Greece;

    Ctr Res & Technol Hellas, Chem Proc & Energy Resources Inst, Thessaloniki 57001, Greece;

    Ctr Res & Technol Hellas, Chem Proc & Energy Resources Inst, Thessaloniki 57001, Greece;

    Ctr Res & Technol Hellas, Chem Proc & Energy Resources Inst, Thessaloniki 57001, Greece;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号