首页> 外文期刊>Energy & fuels >Classifying Multiscale Pores and Investigating Their Relationship with Porosity and Permeability in Tight Sandstone Gas Reservoirs
【24h】

Classifying Multiscale Pores and Investigating Their Relationship with Porosity and Permeability in Tight Sandstone Gas Reservoirs

机译:致密砂岩气藏中多尺度孔隙的分类及其与孔隙度和渗透率的关系

获取原文
获取原文并翻译 | 示例
       

摘要

Since tight sandstone usually contains pores of multiscales and various types, it is important to classify pores in scale and investigate their distinct contributions to porosity and permeability for better understanding of the storage and percolation mechanism of tight gas sandstone reservoirs. In this study, rate-controlled porosimetry (RCP) was performed to probe the pore connectivity and fractal structures and classify pores' size, while low temperature N-2 adsorption and nuclear magnetic resonance (NMR) were conducted to determine the specific surface area (SSA) and the relative content for different scales of pores, respectively. Based on the differences in pore connectivity and the contributions to storage and percolation, pores in tight sandstone are divided into nanopores (mainly < 0.5 mu m), micropores (mainly 0.5-1.5 mu m), and mesopores (mainly > 1.5 mu m). Nanopores consist of the clay-associated pores and intraparticle dissolution pores, contributing to both percolation and storage, especially to the SSA; micropores comprise the narrow slits between grains and the quartz intercrystalline pores, mostly dominating the permeability, while mesopores, dominated by the interparticle-related pores, must be connected with microporesanopores and therefore mostly contribute to storage. The weak correlation between porosity and permeability is mainly attributed to the combination of diagenesis and compaction, because they damage the correlation of micropores content with porosity. For tight sandstones with the weak correlation between petrophysical properties, permeability established by producible porosity, Coates model, and Pittman method are better than that by the SDR (Schlumberger Doll Research) model. Tight sandstone reservoirs with different content of micropores and nanopores show a distinct gas storage and percolation mechanism; with decreasing microporosity, the contribution of nanopores becomes predominant, the adsorbed gas content becomes greater, and the decreasing rate in production with pressure decay becomes slow.
机译:由于致密砂岩通常包含多尺度和各种类型的孔隙,因此重要的是对孔隙按比例进行分类并研究其对孔隙度和渗透率的独特贡献,以更好地了解致密气砂岩储层的渗漏机理。在这项研究中,使用速率控制孔隙率法(RCP)来探测孔的连通性和分形结构并对孔的大小进行分类,同时进行低温N-2吸附和核磁共振(NMR)以确定比表面积( SSA)和不同比例的毛孔的相对含量。根据孔隙连通性的差异以及对储集和渗滤的贡献,致密砂岩中的孔隙分为纳米孔(主要为<0.5微米),微孔(主要为0.5-1.5微米)和中孔(主要为> 1.5微米)。 。纳米孔由粘土相关的孔和颗粒内的溶解孔组成,有助于渗透和存储,特别是SSA。微孔包括晶粒和石英晶间孔之间的窄缝,主要控制渗透性,而以与颗粒间有关的孔为主的中孔必须与微孔/纳米孔连接,因此主要有助于储存。孔隙度与渗透率之间的弱相关性主要归因于成岩作用与压实作用的结合,因为它们破坏了微孔含量与孔隙度的相关性。对于岩石岩石物性之间相关性较弱的致密砂岩,通过可生产孔隙度,Coates模型和Pittman方法建立的渗透率要优于SDR(Schlumberger Doll Research)模型。致密砂岩储层具有不同的微孔和纳米孔含量,表现出独特的储气和渗流机理。随着微孔率的降低,纳米孔的贡献变得占主导,吸附的气体含量变得更大,并且随着压力衰减的产量降低速度变慢。

著录项

  • 来源
    《Energy & fuels》 |2017年第9期|9188-9200|共13页
  • 作者单位

    China Univ Petr East China, Res Inst Unconvent Oil & Gas & Renewable Energy, Qingdao 266580, Peoples R China;

    China Univ Petr East China, Res Inst Unconvent Oil & Gas & Renewable Energy, Qingdao 266580, Peoples R China;

    China Univ Petr East China, Res Inst Unconvent Oil & Gas & Renewable Energy, Qingdao 266580, Peoples R China;

    China Univ Petr East China, Res Inst Unconvent Oil & Gas & Renewable Energy, Qingdao 266580, Peoples R China;

    China Univ Petr East China, Res Inst Unconvent Oil & Gas & Renewable Energy, Qingdao 266580, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:39:39

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号