首页> 外文学位 >Laboratory investigation of multiphase permeability evolution due to fracturing fluid filtrate in tight gas sandstones.
【24h】

Laboratory investigation of multiphase permeability evolution due to fracturing fluid filtrate in tight gas sandstones.

机译:致密气砂岩中压裂液滤液引起的多相渗透率演化的室内研究。

获取原文
获取原文并翻译 | 示例

摘要

Injection of large volumes of fluids during fracture treatment may result in leak-off, capillary imbibition and trapping of the fracturing fluid filtrate in the pores of the reservoir. The trapped fluid affects the mobility of hydrocarbons during clean-up and production. Additionally, the fracturing fluid filtrate near wellbore and fracture region is one of variable composition and can induce alterations in rock-fluid and fluid-fluid interactions. The concomitant changes in multiphase permeability during fluid invasion and clean-up is one that is not fully understood.;The aim of this study is to investigate the role fracturing fluid filtrate composition has on the evolution of multiphase permeability during imbibition and drainage of the aqueous phase. In this work, multiphase flow of fracturing fluid filtrate in low permeability sandstones was investigated by means of laboratory experiments for three commonly employed fracturing fluids. The multiphase flow experiments were conducted using brine, helium and filtrate from various fracturing fluids in sandstones cores of different permeabilities. The alteration of rock-fluid properties and changes in interfacial tension in the presence of gas were determined by evaluation of the obtained relative permeability curves to both gas and liquid/filtrate phase. Experimental results indicate that there was a reduction in end-point and liquid phase relative permeability following imbibition of slickwater into the core sample. The liquid phase relative permeability decreases with increasing concentration of friction reducer (Polyacrylamide solution) present in the fluid system. Adsorption flow experiments with slickwater confirm the adsorption of polyacrylamide molecules to the pore walls of the rock sample and results in increased wettability of the rock sample. This process was found to increase liquid trapping potential of the rock surface. For linear and crosslinked gels, filtrate composition does not have a significant effect on liquid relative permeability during fluid invasion due to limited polymer invasion into the core.;This study also investigated the effect of alcohol and surfactant used as remediation additives on multiphase permeability evolution with different fracturing fluid systems. Multiphase permeability flow tests were conducted to determine, understand and quantify the mechanisms that govern multiphase permeability evolution using alcohols and surfactants to remediate aqueous phase trapping. Methanol and two surfactant chemicals, Novec FC-4430 and Triton X-100 were used as remediation additives in this study.;Results from multiphase permeability flow tests conducted with methanol indicated that the volume of liquid removed by displacement increases with methanol concentrations for all fracturing fluids. This is attributed to increased liquid mobility from addition of methanol during the displacement process. Interfacial tension does not contribute to multiphase permeability during the displacement phase. Additionally, friction reducer alters the flow properties of the trapped liquid as indicated by increased surface tension, lower volumes of liquid removed and lower gas endpoint permeability at the same methanol concentration for cores saturated with slickwater. Majority of the improvement in gas permeability from methanol addition is by evaporation of the trapped liquid phase and is caused by increased volatility of the fracturing fluid. Results from multiphase permeability flow tests conducted with surfactant indicated that multiphase permeability evolution is driven by wettability alteration of the rock surface. Pretreatment of core sample with Novec FC-4430 before flooding with fracturing fluid results in best gas permeability improvement and liquid recovery. Triton X-100 did not improve gas permeability or liquid recovery during cleanup. Findings from this study can be used to optimize fracturing fluid and additive selection for field applications. Multiphase permeability data obtained is also useful for model assisted analysis of post fractured production performance in low permeability reservoirs.
机译:在压裂处理期间注入大量的流体可能导致泄漏,毛细管吸收和压裂液滤液在储层孔隙中的捕集。截留的流体会影响清理和生产过程中碳氢化合物的流动性。另外,井筒和裂缝区域附近的压裂液滤液是组成可变的组分之一,并且可以引起岩石-流体和流体-流体相互作用的改变。尚未完全理解在流体侵入和清除过程中多相渗透率的伴随变化。本研究的目的是研究压裂液滤液成分在水的吸收和排水过程中对多相渗透率演变的作用。相。在这项工作中,通过对三种常用压裂液的实验室实验,研究了低渗透性砂岩中压裂液滤液的多相流。使用盐水,氦气和来自不同渗透率的砂岩岩心中各种压裂液的滤液进行多相流实验。通过评估所获得的相对于气相和液相/滤液相的相对渗透率曲线,可以确定在存在气体的情况下岩石流体性质的变化和界面张力的变化。实验结果表明,在将滑水吸收到岩心样品中之后,终点和液相的相对渗透率降低了。液相相对渗透率随着流体系统中减摩剂(聚丙烯酰胺溶液)浓度的增加而降低。滑水的吸附流实验证实聚丙烯酰胺分子吸附在岩石样品的孔壁上,并导致岩石样品的润湿性增加。发现该过程增加了岩石表面的液体捕获潜力。对于线性和交联凝胶,由于聚合物对核的限制扩散,滤液成分在流体侵入过程中对液体相对渗透率没有显着影响。;本研究还研究了用作补救添加剂的醇和表面活性剂对多相渗透率演变的影响。不同的压裂液系统。进行了多相渗透率流动测试,以确定,理解和量化使用醇和表面活性剂来补救水相捕集的控制多相渗透率演变的机制。本研究使用甲醇和两种表面活性剂化学品Novec FC-4430和Triton X-100作为修复添加剂。用甲醇进行的多相渗透流测试结果表明,在所有压裂过程中,通过驱油去除的液体量均随甲醇浓度的增加而增加。液体。这是由于在置换过程中加入甲醇增加了液体的流动性。在驱替阶段,界面张力对多相渗透性没有贡献。另外,减摩剂改变了被捕集的液体的流动特性,这表现为表面张力增加,在相同的甲醇浓度下用滑水饱和的岩心,在相同的甲醇浓度下,去除的液体量减少,气体终点渗透率降低。通过添加甲醇而提高的气体渗透性的大部分是由于捕集的液相的蒸发,并且是由压裂液的挥发性增加引起的。用表面活性剂进行的多相渗透率流动试验的结果表明,多相渗透率的演化是由岩石表面的润湿性改变所驱动的。在用压裂液驱油之前,用Novec FC-4430对岩心样品进行预处理,可以最大程度地提高透气性和液体回收率。 Triton X-100不能改善净化过程中的透气性或液体回收率。这项研究的结果可用于优化压裂液和现场应用添加剂的选择。获得的多相渗透率数据也可用于低渗透油藏裂缝后生产性能的模型辅助分析。

著录项

  • 作者

    Abaa, Kelvin Nder.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Petroleum engineering.;Geology.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 190 p.
  • 总页数 190
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号