首页> 外文期刊>Energy & fuels >FACE Gasoline Surrogates Formulated by an Enhanced Multivariate Optimization Framework
【24h】

FACE Gasoline Surrogates Formulated by an Enhanced Multivariate Optimization Framework

机译:通过增强的多元优化框架制定的FACE汽油替代品

获取原文
获取原文并翻译 | 示例
       

摘要

Design and optimization of higher efficiency, lower-emission internal combustion engines are highly dependent on fuel chemistry. Resolving chemistry for complex fuels, like gasoline, is challenging. A solution is to study a fuel surrogate: a blend of a small number of well-characterized hydrocarbons to represent real fuels by emulating their thermophysical and chemical kinetics properties. In the current study, an existing gasoline surrogate formulation algorithm is further enhanced by incorporating novel chemometric models. These models use infrared spectra of hydrocarbon fuels to predict octane numbers and are valid for a wide array of neat hydrocarbons and mixtures of such. This work leverages 14 hydrocarbon species to form tailored surrogate palettes for the fuels for advanced combustion engine (FACE) gasolines, including candidate component species not previously considered, namely, n-pentane, 2-methylpentane, 1-pentene, cyclohexane, and o-xylene. We evaluate the performance of "full" and "reduced" surrogates for the 10 fuels for advanced combustion engine gasolines, containing between 8-12 and 4-7 components, respectively. These surrogates match the target properties of the real fuels, on average, within 5%. This close agreement demonstrates that the algorithm can design surrogates matching the wide array of target properties, such as octane numbers, density, hydrogen-to-carbon ratio, distillation characteristics, and proportions of carbon-carbon bond types. We also compare our surrogates to those available in literature (FACE gasolines A, C, F, G, I, and J). Our surrogates for these fuels, on average, better match RON, MON, and distillation characteristics within 0.5%, 0.7%, and 0.9%, respectively, with literature surrogates at 1.2%, 1.1%, and 1.8% error, respectively. However, our surrogates perform slightly worse for density, hydrogen-to-carbon ratio, and carbon-carbon bond types at errors of 3.3%, 6.8%, and 2.2%, respectively, with literature surrogates at 1.3%, 2.3%, and 1.9%, respectively. Overall, the approach demonstrated here offers a promising method to better design surrogates for gasoline-like fuels with a wide array of properties.
机译:高效,低排放内燃机的设计和优化高度依赖于燃料化学成分。解决复杂燃料(如汽油)的化学反应具有挑战性。一种解决方案是研究燃料替代物:通过模拟其热物理和化学动力学特性,将少量特征明确的碳氢化合物的混合物代表真实的燃料。在当前的研究中,通过合并新的化学计量模型进一步增强了现有的汽油替代物制定算法。这些模型使用碳氢化合物燃料的红外光谱预测辛烷值,并且适用于各种各样的纯净碳氢化合物及其混合物。这项工作利用14种碳氢化合物来形成高级内燃机(FACE)汽油燃料的量身定制的替代调色板,包括以前未考虑的候选组分,即正戊烷,2-甲基戊烷,1-戊烯,环己烷和邻-戊烷。二甲苯。我们评估了高级内燃机汽油的10种燃料的“完全”和“减少”替代物的性能,这10种燃料分别包含8-12和4-7之间的成分。这些替代物与实际燃料的目标特性相匹配,平均在5%以内。这个紧密的协议表明,该算法可以设计出与目标特性广泛匹配的替代物,例如辛烷值,密度,氢碳比,蒸馏特性和碳碳键类型比例。我们还将我们的替代品与文献(FACE汽油A,C,F,G,I和J)中的替代品进行比较。我们对这些燃料的替代物,平均而言,RON,MON和蒸馏特性的匹配度分别在0.5%,0.7%和0.9%之内,与文献替代物的误差分别为1.2%,1.1%和1.8%。但是,我们的替代指标在密度,氢碳比和碳-碳键类型方面表现稍差,误差分别为3.3%,6.8%和2.2%,文献替代指标分别为1.3%,2.3%和1.9。 %, 分别。总体而言,此处演示的方法提供了一种有前途的方法,可以更好地设计具有多种特性的类汽油燃料的替代物。

著录项

  • 来源
    《Energy & fuels》 |2018年第7期|7916-7932|共17页
  • 作者单位

    Oregon State Univ, Sch Mech Ind & Mfg Engn, Corvallis, OR 97331 USA;

    Oregon State Univ, Sch Mech Ind & Mfg Engn, Corvallis, OR 97331 USA;

    Chevron Energy Technol Co, Richmond, CA 94802 USA;

    Oregon State Univ Cascades, Sch Mech Ind & Mfg Engn, Bend, OR 97703 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:39:12

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号