首页> 外文期刊>Energy & fuels >Emission Modeling of an Interturbine Burner Based on Flameless Combustion
【24h】

Emission Modeling of an Interturbine Burner Based on Flameless Combustion

机译:基于无焰燃烧的燃气轮机燃烧器排放模型

获取原文
获取原文并翻译 | 示例
       

摘要

Since its discovery, the flameless combustion (FC) regime has been a promising alternative to reduce pollutant emissions of gas turbine engines. This combustion mode is characterized by well-distributed reaction zones, which potentially decreases temperature gradients, acoustic oscillations, and NOx emissions. Its attainment within gas turbine engines has proved to be challenging because previous design attempts faced limitations related to operational range and combustion efficiency. Along with an aircraft conceptual design, the AHEAD project proposed a novel hybrid engine. One of the key features of the proposed hybrid engine is the use of two combustion chambers, with the second combustor operating in the FC mode. This novel configuration would allow the facilitation of the attainment of the FC regime. The conceptual design was adapted to a laboratory scale combustor that was tested at elevated temperature and atmospheric pressure. In the current work, the emission behavior of this scaled combustor is analyzed using computational fluid dynamics (CFD) and chemical reactor network (CRN). The CFD was able to provide information with the flow field in the combustor, while the CRN was used to model and predict emissions. The CRN approach allowed the analysis of the NOx formation pathways, indicating that the prompt NOx was the dominant pathway in the combustor. The combustor design can be improved by modifying the mixing between fuel and oxidizer as well as the split between combustion and dilution air.
机译:自发现以来,无焰燃烧(FC)机制一直是减少燃气涡轮发动机污染物排放的有前途的替代方法。这种燃烧模式的特点是反应区分布均匀,可能会降低温度梯度,声波振荡和NOx排放。由于先前的设计尝试面临与运行范围和燃烧效率相关的限制,因此在燃气涡轮发动机中达到这一目标已证明具有挑战性。除了飞机的概念​​设计,AHEAD项目还提出了一种新型混合动力发动机。提出的混合动力发动机的关键特征之一是使用两个燃烧室,第二个燃烧室以FC模式运行。这种新颖的配置将有助于实现FC制度。该概念设计适用于实验室规模的燃烧器,该燃烧器在高温和大气压下进行了测试。在当前工作中,使用计算流体力学(CFD)和化学反应器网络(CRN)分析了这种定标燃烧室的排放行为。 CFD能够提供有关燃烧室中流场的信息,而CRN则用于建模和预测排放。 CRN方法允许分析NOx的形成途径,表明迅速的NOx是燃烧室中的主要途径。可通过修改燃料与氧化剂之间的混合以及燃烧与稀释空气之间的分配来改善燃烧室的设计。

著录项

  • 来源
    《Energy & fuels》 |2018年第1期|822-838|共17页
  • 作者单位

    Delft Univ Technol, Fac Aerosp Engn, Kluyverweg 1, NL-2629 Delft, Netherlands;

    Delft Univ Technol, Fac Aerosp Engn, Kluyverweg 1, NL-2629 Delft, Netherlands;

    Technion, Fac Aerosp Engn, Turbo & Jet Engine Lab, IL-32000 Haifa, Israel;

    Delft Univ Technol, Fac Aerosp Engn, Kluyverweg 1, NL-2629 Delft, Netherlands;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:39:08

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号