首页> 外文期刊>Energy & fuels >Influence of Flow Pathway Geometry on Barite Scale Deposition in Marcellus Shale during Hydraulic Fracturing
【24h】

Influence of Flow Pathway Geometry on Barite Scale Deposition in Marcellus Shale during Hydraulic Fracturing

机译:流动路径几何对水力压裂期间Marcellus页岩中小晶刻度沉积的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Barite scaling is a common problem in the shale gas industry. Barite precipitation due to rock-fluid interactions has been studied intensively in static and flow-through experiments, but the impact of flow pathway geometry on barite scaling remains a question. The complex fracture passages can lead to local concentrated geochemical interactions, resulting in spatially variable scaling distribution. In this study, designed patterns with channels and holes were milled in two Marcellus shale cores to represent the main flow pathways, where the slow flow travels from the inlet to the outlet, and near-stagnant zones, where the fluid is trapped. Hydraulic fracturing fluid, created using synthetic water and Monongahela River water as base fluid, was injected at 0.02 mL/min into the cores at 66 degrees C, a core pressure of 12.4 MPa (1800 psi), and a confining pressure of 13.8 MPa (2000 psi) for 28 days. For the core with both channels and holes, barite coatings formed in the channels and the holes, with thicker barite accumulations occurring on the non-patterned half of the core adjacent to the holes on the milled half. For the core with only holes, proppants were added to prop up the main flow pathways. Barite formed on the propped fracture surface. The proppants in the holes were covered with and glued together by barite. Such barite-proppant conglomerates were not found in the main propped fracture. These barite-proppant conglomerates may block transport pathways as well as the barite coatings.
机译:重晶石缩放是页岩气产业中的常见问题。已经在静态和流通的实验中集中研究了岩石流体相互作用引起的重晶石沉淀,但流动路径几何形状对重晶石缩放的影响仍然是一个问题。复杂的骨折通道可以导致局部集中的地球化学相互作用,导致空间可变的缩放分布。在该研究中,用通道和孔的设计图案在两个Marcellus页岩芯中研磨,以表示主流途径,其中慢速流动从入口行进到出口,并且近停滞区域,其中流体被捕获。使用合成水和Monongahela河水作为基础流体产生的液压压裂液,在66℃下将0.02ml / min注入核心,核心压力为12.4MPa(1800psi),施加压力为13.8MPa( 2000 psi)28天。对于具有通道和孔的核心,在通道和孔中形成的晶圆涂层,在铣削的孔的非图案半芯上发生较厚的晶石累积,覆盖在铣削的孔上。对于仅具有孔的核心,加入支撑剂以支撑主流途径。在支撑骨折表面上形成的重晶石。孔中的支撑剂被重晶石覆盖并粘合在一起。在主要的支撑骨折中没有发现这种重晶体的砾岩砾岩。这些晶粒支撑剂砾岩可以阻断传送途径以及重晶石涂层。

著录项

  • 来源
    《Energy & fuels》 |2021年第15期|11947-11957|共11页
  • 作者单位

    Natl Energy Technol Lab Morgantown WV 26505 USA|NETL Support Contractor Morgantown WV 26505 USA;

    Lawrence Berkeley Natl Lab Berkeley CA 94720 USA;

    Natl Energy Technol Lab Morgantown WV 26505 USA|NETL Support Contractor Morgantown WV 26505 USA;

    Natl Energy Technol Lab Morgantown WV 26505 USA;

    Natl Energy Technol Lab Morgantown WV 26505 USA;

    Natl Energy Technol Lab Morgantown WV 26505 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号