...
首页> 外文期刊>Energy & fuels >Co-Processing of Deoxygenated Pyrolysis Bio-Oil with Vacuum Gas Oil through Hydrocracking
【24h】

Co-Processing of Deoxygenated Pyrolysis Bio-Oil with Vacuum Gas Oil through Hydrocracking

机译:通过加氢裂化与真空瓦斯油脱氧热解生物油的共加工

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The co-processing of deoxygenated pyrolysis bio-oil with vacuum gas oil was studied in a hydroprocessing pilot plant. The bio-oil used as the biogenic component of the feed was produced by fast pyrolysis of forest biomass and pretreated via hydrodeoxygenation to improve its chemical stability. Two blends containing 5 and 7.5% deoxygenated bio-oil in hydrotreated vacuum gas oil were tested for hydrocracking at reaction temperatures of 385-400 degrees C, including tests with pure vacuum gas oil to establish a baseline for the study. Testing over 2154 catalyst hours showed that pyrolysis bio-oil co-processing did not impact much baseline hydrocracking selectivity, yielding similar amounts of naphtha and diesel at a given conversion of material boiling above 343 degrees C, but with increasing hydrogen consumption levels proportional to the amount of bio-oil in the feed. Periodic monitoring of catalyst stability during continuous operation showed no signs of enhanced catalyst aging as a result of co-processing the pyrolysis bio-oil blends. Characterization of the distillation fractions from the hydrocracked liquid products revealed differences in hydrocarbon-type composition and fuel properties for the same product streams from different bio-oil blends. The naphtha fraction from the 7.5% co-processing blend showed better octane number with respect to the other naphtha products, owing to its reduced paraffinic content. The diesel products from the two co-processing blends were slightly higher in aromatic content than the baseline diesel product, which caused a loss in cetane index. This study suggests that it is feasible to co-process pyrolysis bio-oil through hydrocracking provided that it has undergone pretreatment to stabilize reactive oxygen components.
机译:研究了用真空瓦斯油的脱氧热解生物油的共加工在加氢处理厂。用作饲料生物成分的生物油是通过森林生物质的快速解析并通过加氢脱氧的预处理来提高其化学稳定性。在385-400℃的反应温度下测试含有5和7.5%的脱氧生物油的两个共混物,在385-400℃的反应温度下进行加氢裂化,包括用纯真空瓦斯油进行测试,以建立研究的基线。在2154次催化剂小时内测试表明,热解生物油加工不影响大量基线加氢裂化选择性,在给定转化的材料沸腾的给定转化时产生类似量的石脑油和柴油,但随着氢消费水平的增加与饲料中生物油的量。连续操作期间催化剂稳定性的周期性监测显示,由于共处理热解生物油混合物,没有增强催化剂老化的迹象。来自加裂化液体产物的蒸馏馏分的表征揭示了来自不同生物油共混物的相同产物流的烃类组合物和燃料性能的差异。 7.5%共处理混合物的石脑油级分显示出相对于其它石脑油产品的辛烷值更好,由于其降低的链烷烃含量。来自两个共处理混合物的柴油产品在芳族含量略高于基线柴油产品,这导致十六烷值的损失。本研究表明,通过加氢裂化,可以通过加氢裂化进行加工热解生物油是可行的,因为它经过预处理以稳定反应性氧组分。

著录项

  • 来源
    《Energy & fuels》 |2021年第12期|9983-9993|共11页
  • 作者单位

    Nat Resources Canada CanmetENERGY Devon Devon AB T9G 1A8 Canada;

    Nat Resources Canada CanmetENERGY Devon Devon AB T9G 1A8 Canada;

    Nat Resources Canada CanmetENERGY Devon Devon AB T9G 1A8 Canada;

    Nat Resources Canada CanmetENERGY Ottawa Ottawa ON K1A 1M1 Canada;

    Nat Resources Canada CanmetENERGY Ottawa Ottawa ON K1A 1M1 Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号