首页> 外文期刊>Energy & fuels >Numerical Investigation of Particulate Matter Processes in Gasoline Direct Injection Engines through Integrated Computational Fluid Dynamics-Chemical Kinetic Modeling
【24h】

Numerical Investigation of Particulate Matter Processes in Gasoline Direct Injection Engines through Integrated Computational Fluid Dynamics-Chemical Kinetic Modeling

机译:汽油直喷发动机通过综合计算流体动力学 - 化学动力学模拟数值研究

获取原文
获取原文并翻译 | 示例
       

摘要

Despite improvements in thermal efficiency and fuel economy, gasoline direct injection (GDI) engines have been identified as a prominent source of ultrafine particulate matter (PM) in the atmosphere. Adverse impacts caused by PM on the environment and public health motivate the need to deepen the understanding of PM emissions from GDI engines. Hence, an integrated modeling approach is formulated to investigate PM processes in a wall-guided GDI engine by bridging the gap between computational fluid dynamics (CFD) and chemical kinetics. Serving as the gasoline surrogate, a reduced and validated toluene reference mechanism is selected. Spray, turbulence, fuel impingement, liquid film, spark ignition, combustion, and PM emissions are modeled by a complete set of CFD submodels. The dynamic multizone partitioning is introduced within the CFD framework for computational expenditure while soot modeling is addressed through the sectional method. In-cylinder pressures, number density, and mass density of PM are reproduced across engine speeds of 1600-3000 rpm and loads with torques of 60-120 N m. Under a homogeneous stoichiometric mode, dominant formation mechanisms of PM are highlighted as the emergence of fuel-rich regions and the presence of residual liquid fuel droplets at the spark timing. The former is attributed to film stripping and evaporation due to spray-wall interactions while the latter stems from poor droplet vaporization from fuel injected, rebounded, splashed, and/or stripped from the liquid film. Optimized control strategies for GDI engine operations should target to minimize these sources for effective PM abatement.
机译:尽管热效率和燃料经济性提高,但汽油直接注射(GDI)发动机已被鉴定为大气中超细颗粒物质(PM)的突出来源。 PM对环境和公共卫生造成的不利影响激励加深对GDI发动机的PM排放的理解。因此,通过桥接计算流体动力学(CFD)和化学动力学之间的间隙来制定综合建模方法以研究墙壁引导的GDI发动机中的PM过程。用作汽油替代物,选择了减少和验证的甲苯参考机构。喷雾,湍流,燃料冲击,液体膜,火花点火,燃烧和PM排放由一整套CFD子模型建模。在CFD框架内引入动态多态分区,以进行计算支出,而通过截面方法解决了烟灰建模。 PM的缸内压力,数密度和质量密度跨越1600-3000rpm的发动机速度,并载有60-120 n m的圆形载荷。在均匀的化学计量模式下,PM的显性形成机制被突出显示为富含燃料的区域的出现以及在火花正时存在残余液体燃料液滴。前者归因于由于喷射壁相互作用引起的薄膜剥离和蒸发,而后者源于从注入,反弹,溅出和/或从液体膜中剥离的燃料较差的液滴蒸发。 GDI发动机操作的优化控制策略应旨在最大限度地减少这些源以实现有效的PM减少。

著录项

  • 来源
    《Energy & fuels》 |2020年第4期|4909-4924|共16页
  • 作者单位

    Univ Nottingham Malaysia Dept Mech Mat & Mfg Engn Semenyih 43500 Selangor Darul Malaysia;

    Oxford Brookes Univ Dept Mech Engn & Math Sci Oxford OX33 1HX England;

    Univ Nottingham Malaysia Dept Mech Mat & Mfg Engn Semenyih 43500 Selangor Darul Malaysia;

    Univ Nottingham Malaysia Dept Mech Mat & Mfg Engn Semenyih 43500 Selangor Darul Malaysia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 22:24:54

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号