首页> 外文期刊>Energy & fuels >Two-Phase Transport Characteristic of Shale Gas and Water through Hydrophilic and Hydrophobic Nanopores
【24h】

Two-Phase Transport Characteristic of Shale Gas and Water through Hydrophilic and Hydrophobic Nanopores

机译:流水和疏水纳米孔的页岩气和水的两相传输特性

获取原文
获取原文并翻译 | 示例
           

摘要

Previous attempts to characterize shale gas transport in nanopores are not fully successful due to the fact that the presence of water within shale reservoirs is generally overlooked. In addition, shale is known as a wettability-varying (hydrophilic and hydrophobic) rock depending on various components and maturity grades. Herein, toward this end, we performed a comprehensive study about two-phase transport characteristic of shale gas and water through hydrophilic and hydrophobic nanopores by integrating the molecular dynamics (MD) simulations and analytical models. Using MD simulations, we showed that water molecules prefer to accumulate at the walls (water film) in hydrophilic nanopores while form the water cluster at the center region of hydrophobic nanopores, which significantly alters the shale gas transport behavior. For hydrophilic nanopores, the existence of water film weakens the gas-walls collisions (slip effect), resulting in a viscosity dominant transport mechanism. In contrary, shale gas transport in hydrophobic nanopores is mainly contributed by slip effect where the gas-gas collisions (viscosity) is abated by the water cluster. On this basis, we proposed an analytical model to quantitatively depict the shale gas transport behavior in moist nanopores, which is well verified by MD simulations results. Particularly, according to our flow model, the gas transport capacity decreases to only 15% when mixing with 50% water molecules for both hydrophilic and hydrophobic nanopores, which would be greatly overestimated by traditional models neglecting the presence of water molecules. The deep insights gained in this work will further the exploitation and development of shale reservoirs.
机译:以前的尝试在纳米孔中表征页岩气运输的尝试没有完全成功,因为页岩储层的存在通常被忽视。此外,由于各种组分和成熟度等级,页岩被称为润湿性 - 变化(亲水和疏水性)岩石。在此,朝向该目的,通过集成分子动力学(MD)模拟和分析模型,通过亲水和疏水纳米孔来对页岩气和水的两相传输特性进行综合研究。使用MD模拟,我们展示了水分子优选在亲水纳米孔的壁(水膜)中积聚,同时在疏水性纳米孔的中心区域形成水簇,这显着改变了页岩气输送行为。对于亲水纳米孔,水膜的存在削弱了气体壁碰撞(滑动效果),导致粘度的主要传输机制。相反,疏水纳米孔中的页岩气输送主要是通过滑动效果导致的,其中气体 - 气体碰撞(粘度)由水簇减少。在此基础上,我们提出了一种分析模型,以定量地描绘湿润纳米孔中的页岩气输送行为,其通过MD模拟结果良好验证。特别是,根据我们的流动模型,当与亲水和疏水纳米孔的50%水分子混合时,气体输送能力仅降低到15%,这将通过忽视水分子存在的传统模型来大大高估。这项工作中获得的深层洞察力将进一步推动页岩水库的开发和发展。

著录项

  • 来源
    《Energy & fuels》 |2020年第4期|4407-4420|共14页
  • 作者单位

    Univ Sci & Technol China Dept Modern Mech CAS Key Lab Mech Behav & Design Mat CAS Ctr Excellence Complex Syst Mech Hefei 230027 Peoples R China;

    Univ Sci & Technol China Dept Modern Mech CAS Key Lab Mech Behav & Design Mat CAS Ctr Excellence Complex Syst Mech Hefei 230027 Peoples R China;

    Univ Sci & Technol China Dept Modern Mech CAS Key Lab Mech Behav & Design Mat CAS Ctr Excellence Complex Syst Mech Hefei 230027 Peoples R China;

    Univ Sci & Technol China Dept Modern Mech CAS Key Lab Mech Behav & Design Mat CAS Ctr Excellence Complex Syst Mech Hefei 230027 Peoples R China;

    Univ Sci & Technol China Dept Modern Mech CAS Key Lab Mech Behav & Design Mat CAS Ctr Excellence Complex Syst Mech Hefei 230027 Peoples R China;

    Univ Sci & Technol China Dept Modern Mech CAS Key Lab Mech Behav & Design Mat CAS Ctr Excellence Complex Syst Mech Hefei 230027 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号