首页> 外文期刊>Energy & fuels >Supercritical Methane Adsorption on Shale over Wide Pressure and Temperature Ranges: Implications for Gas-in-Place Estimation
【24h】

Supercritical Methane Adsorption on Shale over Wide Pressure and Temperature Ranges: Implications for Gas-in-Place Estimation

机译:超临界甲烷在宽压力和温度范围内的页岩吸附:对燃气地估计的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Methane adsorption experiments over wide ranges of pressure (up to 30 MPa) and temperature (30-120 degrees C) were performed using a gravimetric method on the Longmaxi shale collected from the northeast boundary of Sichuan Basin, China. Organic geochemical analyses, shale composition determination, and porosity tests were also conducted. The experimental supercritical methane excess adsorption isotherms at different temperatures initially increase and then decrease with increasing pressure, giving a maximum excess adsorption capacity (G(ex)(m) = 1.86-2.87 cm(3)/g) at a certain pressure P-m (6.71-12.90 MPa). The excess adsorption capacity decreases with increasing temperature below 28 MPa, while this effect reversed above 28 MPa. However, the absolute adsorption capacity decreases as the temperature increases over the full pressure range. Supercritical methane adsorption on shale is of temperature dependence because it is a physical exothermic process supported by calculated thermodynamic parameters. Pm is positively correlated with the temperature, while the decline rates (0.021-0.058 cm(3) g(-1) MPa-1) in excess adsorption negatively correlate with the temperature. Meanwhile, Langmuir volume G(L) (3.07-4.04 cm(3)/g) decreases while Langmuir pressure P-L (1.44-4.31 MPa) increases with temperature elevation. In comparison to the actual adsorbed gas (absolute adsorption), an underestimation exists in the excess adsorption calculation, which increases with increasing depth. The conventional method, without subtracting the volume occupied by adsorbed gas, overestimates the actual free gas content, especially for the deep shale reservoirs. In situ adsorbed gas is simultaneously controlled by the positive effect of the reservoir pressure and the adverse effect of the reservoir temperature. Nevertheless, in situ free gas is dominated by the positive effect of the reservoir pressure. Low-temperature overpressure reservoirs are favorable for shale gas enrichment. Geological application of gas-in-place estimation shows that, with increasing depth, the adsorbed gas content increases rapidly and then declines slowly, whereas the free gas content increases continuously. There was an equivalence point at which the contents of adsorbed and free gas are equal, and the equivalence point moved to the deep areas with increasing water saturation. Moreover, the adsorbed gas and free gas distribution are characterized by the dominant depth zones, providing the reference for shale gas exploration and development.
机译:在中国四川盆地东北边界的龙马西页岩上采用重量法进行甲烷吸附实验(高达30MPa)和温度(30-120℃)的温度(30-120℃)。还进行了有机地球化学分析,页岩组合物测定和孔隙率试验。在不同温度下,实验超临界甲烷过量的吸附等温线最初增加,然后随着压力的增加而降低,在一定压力下,给出最大过量的吸附容量(G(ex)(m)= 1.86-2.87cm(3)/ g)( 6.71-12.90 MPa)。过量的吸附容量随温度低于28MPa的温度越来越低,而这种效果在28MPa以上逆转。然而,由于温度在全压范围内增加,绝对吸附容量降低。超临界甲烷对页岩的吸附是温度依赖性,因为它是由计算的热力学参数支持的物理放​​热过程。 PM与温度呈正相关,而过量吸附中的下降率(0.021-0.058cm(3)克(3)mPa-1)与温度负相关。同时,Langmuir体积G(L)(3.07-4.04cm(3)/ g)降低,而Langmuir压力p-L(1.44-4.31MPa)随温度升高而增加。与实际吸附气体(绝对吸附)相比,在过量的吸附计算中存在低估,随着深度的增加而增加。常规方法,而不减去吸附气体占据的体积,高估实际的游离气体含量,特别是对于深层页岩储存器。原位吸附气体同时通过储层压力的积极作用和储层温度的不利影响来控制。然而,原位自由气体是储层压力的积极作用。低温过压水库有利于页岩气富集。气体地质施加的地质应用表明,随着深度的增加,吸附的气体含量迅速增加,然后缓慢下降,而自由气体含量连续增加。吸附和自由气体的含量相等的等效点是相等的,并且随着水饱和度的增加而移动到深度区域。此外,吸附的气体和自由气体分布的特征在于主导深度区域,为页岩气勘探和发育提供参考。

著录项

  • 来源
    《Energy & fuels》 |2020年第3期|3121-3134|共14页
  • 作者单位

    China Univ Min & Technol Minist Educ Key Lab Coalbed Methane Resources & Reservoir For Xuzhou 221008 Jiangsu Peoples R China|China Univ Min & Technol Sch Resources & Geosci Xuzhou 221008 Jiangsu Peoples R China|Univ Queensland Sch Chem Engn St Lucia Qld 4072 Australia;

    China Univ Min & Technol Minist Educ Key Lab Coalbed Methane Resources & Reservoir For Xuzhou 221008 Jiangsu Peoples R China|China Univ Min & Technol Sch Resources & Geosci Xuzhou 221008 Jiangsu Peoples R China;

    China Univ Min & Technol Minist Educ Key Lab Coalbed Methane Resources & Reservoir For Xuzhou 221008 Jiangsu Peoples R China|China Univ Min & Technol Sch Resources & Geosci Xuzhou 221008 Jiangsu Peoples R China;

    China Univ Min & Technol Minist Educ Key Lab Coalbed Methane Resources & Reservoir For Xuzhou 221008 Jiangsu Peoples R China|China Univ Min & Technol Sch Resources & Geosci Xuzhou 221008 Jiangsu Peoples R China;

    China Univ Min & Technol Minist Educ Key Lab Coalbed Methane Resources & Reservoir For Xuzhou 221008 Jiangsu Peoples R China|China Univ Min & Technol Sch Resources & Geosci Xuzhou 221008 Jiangsu Peoples R China;

    Univ Queensland Sch Chem Engn St Lucia Qld 4072 Australia;

    Univ Queensland Sch Chem Engn St Lucia Qld 4072 Australia;

    Univ Queensland Sch Chem Engn St Lucia Qld 4072 Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号