首页> 外文期刊>Energy & fuels >Re-Recognition of the MILD Combustion Regime by Initial Conditions of T_(in) and X_(02) for Methane in a Nonadiabatic Well-Stirred Reactor
【24h】

Re-Recognition of the MILD Combustion Regime by Initial Conditions of T_(in) and X_(02) for Methane in a Nonadiabatic Well-Stirred Reactor

机译:在非绝热的充分搅拌反应堆中,通过甲烷的T_(in)和X_(02)的初始条件重新识别MILD燃烧状态

获取原文
获取原文并翻译 | 示例
       

摘要

A more straightforward combustion map for identifying moderate or intense low-oxygen dilution (MILD) combustion regime in a well-stirred reactor (WSR) using initial inlet temperature (T-in) and oxygen mole fraction (x(O2)) has been proposed based on previous mathematical criteria provided by Cavaliere and de Joannon (Prog. Energy Combust. Sci. 2004, 30, 329-366). Furthermore, the detailed evolution of different combustion regimes under the nonadiabatic condition has been comprehensively examined. Results show that there exists a critical X-O2 (X-O2*), below which MILD combustion can be established unconditionally as long as T-in exceeds the self-ignition point (T-in) and beyond which T-in needs to be remarkably promoted to fulfill the mathematical criteria of MILD combustion. Thus, the two regions are termed unconditional MILD combustion (UMC) and conditional MILD combustion (CMC), respectively. For the adiabatic condition, X-O2* is calculated to be 9.7%, indicating that MILD combustion will be more easily achieved with an oxygen-diluted oxidizer than the oxygen-enriched counterpart. Interestingly, X-O2* is found to climb as the heat loss ratio (HLR) increases, suggesting that enhancing the HLR of the WSR would help expand the UMC region, namely, more readily establishing MILD combustion. In addition, high-temperature combustion (HTC) can shift to CMC or even UMC by just enlarging HLR, providing a potential solution to realize MILD combustion in practical applications. However, the combustion regime would further shift to unsteady combustion (USC) or even no reaction (NR) regions once the heat is overextracted. Hence, it would be a challenge for MILD combustion application in intense heat extraction scenarios, such as boilers. Interestingly, higher T-in and lower X-O2 are found able to widen the UMC region under larger HLR conditions. Moreover, CO2 or H2O dilution would result in a wider UMC region compared to N-2 dilution, while it is more pronounced for CO2 due to its highest X-O2*. Besides, the shifting of the combustion regime from HTC to MILD combustion by heat extraction would be more effective with CO2 dilution than either N-2 or H2O dilution.
机译:提出了一种更直接的燃烧图,用于使用初始入口温度(T-in)和氧气摩尔分数(x(O2))在搅拌良好的反应堆(WSR)中确定中等或强烈的低氧稀释(MILD)燃烧方式基于Cavaliere和de Joannon(Prog。Energy Combust。Sci。2004,30,329-366)提供的先前的数学标准。此外,已经全面研究了非绝热条件下不同燃烧方式的详细演变。结果表明存在一个关键的X-O2(X-O2 *),如果T-in超过自燃点(T-in),并且在该温度以上,则可以无条件建立MILD燃烧。显着地促进其达到轻度燃烧的数学标准。因此,这两个区域分别称为无条件MILD燃烧(UMC)和有条件MILD燃烧(CMC)。对于绝热条件,X-O2 *计算为9.7%,这表明用氧气稀释的氧化剂比富含氧气的氧化剂更容易实现MILD燃烧。有趣的是,发现X-O2 *随着热损失率(HLR)的增加而上升,这表明提高WSR的HLR有助于扩大UMC区域,即更容易建立MILD燃烧。此外,仅通过增大HLR即可将高温燃烧(HTC)转换为CMC甚至UMC,为在实际应用中实现MILD燃烧提供了潜在的解决方案。但是,一旦热量被过度提取,燃烧状态将进一步转变为不稳定燃烧(USC)甚至没有反应(NR)区域。因此,对于MILD燃烧应用在诸如锅炉之类的高热量提取场景中将是一个挑战。有趣的是,发现在较高的HLR条件下,较高的T-in和较低的X-O2能够加宽UMC区域。此外,与N-2稀释相比,CO2或H2O稀释将导致更宽的UMC区域,而CO2的X-O2 *最高则对CO2更为明显。此外,通过热量提取将燃烧方式从HTC燃烧转换为MILD燃烧,CO2稀释比N-2或H2O稀释更有效。

著录项

  • 来源
    《Energy & fuels》 |2020年第2期|2391-2404|共14页
  • 作者

  • 作者单位

    Huazhong Univ Sci & Technol Sch Energy & Power Engn State Key Lab Coal Combust Wuhan 430074 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 05:21:35

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号