首页> 外文期刊>Energy & fuels >A Numerical Investigation on the Chemical Kinetics Process of a Reacting n-Dodecane Spray Flame under Compression Ignition Combustion Condition
【24h】

A Numerical Investigation on the Chemical Kinetics Process of a Reacting n-Dodecane Spray Flame under Compression Ignition Combustion Condition

机译:压缩点火燃烧条件下正十二烷喷雾火焰化学动力学过程的数值研究

获取原文
获取原文并翻译 | 示例
           

摘要

This paper numerically investigated the chemical kinetic process of a reacting n-dodecane spray flame under a compression ignition combustion condition. To achieve this target, a data processing method by coupling with the chemical kinetic mechanism was proposed and verified. The modeling results demonstrated that before ignition, the spray-flame structure was primarily composed of three regions: (1) an exothermic low-temperature heat release (LTHR) region in the upstream spray core, (2) an endothermic region surrounding the LTHR region, and (3) an exothermic high-temperature heat release (HTHR) region in the downstream spray. Based on the analyses of representative reactions and reaction pathways, the reaction R48 (C6H13 + O-2 = C6H13O2) was found to be the representative exothermic and endothermic reaction for both the LTHR and endothermic regions, while the reaction R276 (HCO + O-2 = CO + HO2) dominated the heat release in the HTHR region, which laid the foundation for the ignition. After the peak premixed heat release, hydrocarbons could not be fully oxidized due to O-2 deficiency and intruded into the high-temperature combustion region instead, leading to the diffusion combustion and initial soot formation. However, the upstream spray-flame structure was slightly affected by the further development of combustion, owing to the comparatively stable and lower temperature. The proposed code can provide more insights into the details of engine combustion and emission formation processes.
机译:本文数值研究了压缩点火燃烧条件下正十二烷喷雾火焰的化学动力学过程。为实现这一目标,提出并验证了结合化学动力学机理的数据处理方法。模拟结果表明,在着火之前,喷射火焰结构主要由三个区域组成:(1)上游喷芯中的放热低温放热(LTHR)区域,(2)围绕LTHR区域的吸热区域(3)下游喷雾中的放热高温放热(HTHR)区。根据代表性反应和反应途径的分析,发现反应R48(C6H13 + O-2 = C6H13O2)是LTHR和吸热区域的代表放热和吸热反应,而反应R276(HCO + O- 2 = CO + HO2)主导了HTHR区域的放热,这为点火奠定了基础。在峰值预混合放热后,碳氢化合物由于O-2缺乏而不能被完全氧化,而是侵入高温燃烧区,从而导致扩散燃烧和初期烟灰形成。然而,由于相对稳定和较低的温度,上游的喷火结构受燃烧进一步发展的影响很小。提议的代码可以提供对发动机燃烧和排放物形成过程细节的更多见解。

著录项

  • 来源
    《Energy & fuels》 |2019年第11期|11899-11912|共14页
  • 作者单位

    Tianjin Univ State Key Lab Engines 92 Weijin Rd Tianjin 300072 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号