首页> 外文期刊>Energy & environmental science >Engineering of efficiency limiting free carriers and an interfacial energy barrier for an enhancing piezoelectric generation
【24h】

Engineering of efficiency limiting free carriers and an interfacial energy barrier for an enhancing piezoelectric generation

机译:限制效率的自由载流子和界面能垒的工程设计,可增强压电的产生

获取原文
获取原文并翻译 | 示例
       

摘要

The energy harvesting efficiency is of tremendous importance for the realization of a high output-power nanogenerator serving as the basis for self-powered electronics. Here we report that the device performance of a sound-driven piezoelectric energy nanogenerator (SPENG) is remarkably improved by controlling both the carrier density and the interfacial energy in a semiconducting ZnO nanowire (NW), thereby achieving its intrinsic efficiency limits. A SPENG with carrier-controlled ZnO NWs exhibits excellent energy harvesting characteristics with an average power density of 0.9 mW cm~(-3), as well as a near 50 fold increase in both output voltage and current compared to those of a conventional ZnO NW. In addition, we demonstrate for the first time that an optimized SPENG is large enough and very suitable to drive electrophoretic ink displays based on voltage-drive systems. This fundamental progress makes it possible to fabricate high performance nanogenerators for viable industrial applications in portable/wearable personal electronics such as electronic papers and smart identity cards.
机译:能量收集效率对于实现高输出功率的纳米发电机作为自供电电子的基础至关重要。在这里,我们报告声控压电能量纳米发电机(SPENG)的器件性能通过控制半导体ZnO纳米线(NW)中的载流子密度和界面能而得到显着改善,从而达到其固有效率极限。具有载流子控制的ZnO NW的SPENG具有出色的能量收集特性,平均功率密度为0.9 mW cm〜(-3),与传统ZnO NW相比,其输出电压和电流均增加了近50倍。此外,我们首次展示了优化的SPENG足够大,非常适合基于电压驱动系统来驱动电泳墨水显示器。这一基本进展使制造适用于便携式/可穿戴个人电子产品(如电子纸和智能身份证)中可行工业应用的高性能纳米发电机成为可能。

著录项

  • 来源
    《Energy & environmental science》 |2013年第1期|97-104|共8页
  • 作者单位

    Frontier Research Lab., Samsung Advanced Institute of Technology, Yongin, 449-712,Korea Department of Engineering Science, University of Oxford, Oxford, OX1 3Pf, UK;

    Frontier Research Lab., Samsung Advanced Institute of Technology, Yongin, 449-712,Korea Department of Engineering Science, University of Oxford, Oxford, OX1 3Pf, UK;

    Frontier Research Lab., Samsung Advanced Institute of Technology, Yongin, 449-712,Korea Department of Physics, Hanyang University, Seoul, 133-791, Korea;

    Department of Physics, Hanyang University, Seoul, 133-791, Korea;

    Frontier Research Lab., Samsung Advanced Institute of Technology, Yongin, 449-712,Korea;

    Frontier Research Lab., Samsung Advanced Institute of Technology, Yongin, 449-712,Korea;

    Frontier Research Lab., Samsung Advanced Institute of Technology, Yongin, 449-712,Korea;

    Frontier Research Lab., Samsung Advanced Institute of Technology, Yongin, 449-712,Korea;

    Frontier Research Lab., Samsung Advanced Institute of Technology, Yongin, 449-712,Korea;

    School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta,Georgia 30332-0245, USA;

    Frontier Research Lab., Samsung Advanced Institute of Technology, Yongin, 449-712,Korea Department of Engineering Science, University of Oxford, Oxford, OX1 3Pf, UK;

    Frontier Research Lab., Samsung Advanced Institute of Technology, Yongin, 449-712,Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 23:13:09

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号