首页> 外文期刊>Energy & environmental science >Scalable fabrication of MnO_2 nanostructure deposited on free-standing Ni nanocone arrays for ultrathin, flexible, high-performance micro-supercapacitor
【24h】

Scalable fabrication of MnO_2 nanostructure deposited on free-standing Ni nanocone arrays for ultrathin, flexible, high-performance micro-supercapacitor

机译:可沉积在独立的Ni纳米锥阵列上的MnO_2纳米结构的可扩展制造,用于超薄,灵活,高性能的微型超级电容器

获取原文
获取原文并翻译 | 示例
           

摘要

Ultrathin and flexible power sources are essential for the rapid development of portable and wearable electronics. The deployment of 3-dimensional (3-D) nanostructured materials on the current collectors has recently emerged as a promising strategy for preparing high-performance supercapacitors. Additionally, it is equally important to develop an appropriate device packaging technique, so as to maximize the improvement of the electrode performance characteristic. Herein, we develop a simple and efficient method for fabricating ultrathin and flexible supercapacitor electrodes containing a manganese dioxide (MnO_2) nanostructure deposited onto 3-D nickel nanocone arrays (NCAs). The MnO_2-NCAs electrode was prepared by an electro-deposition technology, which involves the cathode deposition of NCAs on a titanium carrier film as the current collector and subsequent anode deposited from the MnO_2 nanostructures as the active material. The electrode can be peeled off from the carrier film and thus the resulting freestanding electrode is as thin as 3 μm, and exhibits outstanding mechanical robustness, high specific capacitance (632 F g~(-1)), enhanced energy density (52.2 W h kg~(-1)) and excellent cycle performance (95.3% retention after 20 000 cycles). We further fabricated ultrathin supercapacitors with a total thickness of ~27 μm, which achieved unprecedented features including superior energy density by volume (2.7 × 10~(-3) W h cm~(-3)), superior flexibility and reliability. We demonstrated the application of the MnO_2-NCAs supercapacitor as an ultrathin power source such as driving a LED indicator. This technology may find vast applications in future wearable electronics.
机译:超薄和灵活的电源对于便携式和可穿戴电子产品的快速发展至关重要。最近,在集电器上部署3维(3-D)纳米结构材料已成为一种制备高性能超级电容器的有前途的策略。另外,开发适当的器件封装技术以最大化改善电极性能特性同样重要。在这里,我们开发了一种简单有效的方法来制造超薄且柔性的超级电容器电极,该电极包含沉积在3-D镍纳米锥阵列(NCA)上的二氧化锰(MnO_2)纳米结构。 MnO_2-NCAs电极是通过电沉积技术制备的,该技术包括将NCAs阴极沉积在作为集流体的钛载体膜上,随后将阳极从MnO_2纳米结构作为活性材料沉积。可以将电极从载体膜上剥离下来,从而使所得的独立电极薄至3μm,并具有出色的机械强度,高比电容(632 F g〜(-1))和增强的能量密度(52.2 W h) kg〜(-1))和出色的循环性能(2万次循环后保留95.3%)。我们进一步制造了总厚度约为27μm的超薄超级电容器,该电容器具有前所未有的功能,包括体积能量密度(2.7×10〜(-3)W h cm〜(-3))高,柔韧性和可靠性高。我们演示了MnO_2-NCA超级电容器作为超薄电源(如驱动LED指示器)的应用。这项技术可能会在未来的可穿戴电子产品中找到广泛的应用。

著录项

  • 来源
    《Energy & environmental science》 |2014年第8期|2652-2659|共8页
  • 作者单位

    Division of Energy and Environment, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China;

    Division of Energy and Environment, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China;

    Division of Energy and Environment, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China;

    School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst , Atlanta, GA 30332, USA;

    Division of Energy and Environment, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China;

    Division of Energy and Environment, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China;

    Division of Energy and Environment, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China;

    Division of Energy and Environment, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China,State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China;

    School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst , Atlanta, GA 30332, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号