首页> 外文期刊>Energy & environmental science >3D micro-porous conducting carbon beehive by single step polymer carbonization for high performance supercapacitors: the magic of in situ porogen formation
【24h】

3D micro-porous conducting carbon beehive by single step polymer carbonization for high performance supercapacitors: the magic of in situ porogen formation

机译:单步聚合物碳化的3D微孔导电碳蜂巢用于高性能超级电容器:原位成孔剂形成的魔力

获取原文
获取原文并翻译 | 示例
           

摘要

We report non-templated synthesis of interconnected microporous carbon (IMPC) sheets having beehive morphology by direct pyrolysis of poly(acrylamide-co-acrytic acid) potassium salt in inert atmosphere without any activation. The presence of the alkali metal in the selected polymer precursor results in a high specific surface area of 1327 m~2 g~(-1). Importantly, 80% of the pore volume is contributed by micropores with pore size ranging from 1-2 ran which is ideal for use as an electrode for supercapacitors. Whereas the rest of the surface area was contributed by a small fraction of mesopores and macropores due to the interconnected structure. The presence of three different types of pores make the material ideal for supercapacitor electrodes. IMPC was tested as an electrode in both aqueous and non-aqueous supercapacitors. All the aqueous measurements were done in 1 M H_2SO_4 solution with a potential window 1 V. A specific capacitance of 258 F g~(-1) was realized at a constant charge-discharge current of 0.5 A g~(-1) and it maintained at a value of 150 F g~(-1) at 30 A g~(-1). A long cycle stability of 90% capacitance retention was observed after 5000 charge-discharge cycles at a current density of 2 A g~(-1) At the highest power density 13 600 W kg~(-1) the energy density was found to be 3.1 W h kg~(-1). Non aqueous performance was tested in the presence of 1 M LiPF_6 in ethylene carbonate-di-methyl carbonate with 5 mg active material loading. A specific capacitance of 138 F g~(-1) was obtained at a current density of 0.25 A g~(-1) and it retained at a value of 100 F g~(-1) at 10 A g~(-1). The material can deliver an energy density of 31 W h kg~(-1) at its highest power density of 11 000 W kg~(-1) in a two electrode system based on active material loading.
机译:我们报告了在惰性气氛中直接热解聚(丙烯酰胺-共-丙烯酸)钾盐而没有任何活化的具有蜂巢形态的互连微孔碳(IMPC)片的非模板合成。所选聚合物前体中碱金属的存在导致1327 m〜2 g〜(-1)的高比表面积。重要的是,80%的孔体积是由孔径范围为1-2 ran的微孔贡献的,非常适合用作超级电容器的电极。而其余的表面积是由于相互连接的结构而由小部分的中孔和大孔贡献的。三种不同类型的孔的存在使该材料成为超级电容器电极的理想选择。 IMPC已在水性和非水性超级电容器中作为电极进行测试。所有水相测量均在1 M H_2SO_4溶液中进行,电位窗口为1V。在0.5 A g〜(-1)的恒定充放电电流下,实现了258 F g〜(-1)的比电容。在30 A g〜(-1)时保持150 F g〜(-1)的值。在2 A g〜(-1)的电流密度下进行5000次充放电后,可观察到90%电容保持率的长周期稳定性。在最高功率密度13600 W kg〜(-1)下,发现能量密度为为3.1 W h kg〜(-1)。在碳酸亚乙酯-碳酸二甲酯在1 M LiPF_6存在下,活性物质负载量为5 mg的条件下测试了非水性性能。在0.25 A g〜(-1)的电流密度下获得138 F g〜(-1)的比电容,在10 A g〜(-1)时保持在100 F g〜(-1)的值)。在基于活性材料负载的双电极系统中,该材料在其最高功率密度为11000 W kg〜(-1)时可以提供31 W h kg〜(-1)的能量密度。

著录项

  • 来源
    《Energy & environmental science》 |2014年第2期|728-735|共8页
  • 作者单位

    Centre of Excellence in Solar Energy, Physical and Materials Chemistry Division, National Chemical Laboratory (CSIR-NCL), Pune 411 008, India ,Network Institute of Solar Energy (CSIR-NISE), New Delhi, India ,Academy of Scientific and Innovative Research, Anusandhan Bhawan, 2 Rafi Marg, New Delhi-100 001, India;

    Energy Research Institute @ NTU (ERI@N), Nanyang Technological University, Singapore 637553;

    Energy Research Institute @ NTU (ERI@N), Nanyang Technological University, Singapore 637553, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798;

    Centre of Excellence in Solar Energy, Physical and Materials Chemistry Division, National Chemical Laboratory (CSIR-NCL), Pune 411 008, India ,Network Institute of Solar Energy (CSIR-NISE), New Delhi, India ,Academy of Scientific and Innovative Research, Anusandhan Bhawan, 2 Rafi Marg, New Delhi-100 001, India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号