首页> 外文期刊>Energy & environmental science >Non-precious alloy encapsulated in nitrogen-doped graphene layers derived from MOFs as an active and durable hydrogen evolution reaction catalyst
【24h】

Non-precious alloy encapsulated in nitrogen-doped graphene layers derived from MOFs as an active and durable hydrogen evolution reaction catalyst

机译:非贵金属封装在源自MOF的氮掺杂石墨烯层中,作为活性和持久的析氢反应催化剂

获取原文
获取原文并翻译 | 示例
       

摘要

Non-precious metal based catalysts are emerging as the most promising alternatives to Pt-based ones for hydrogen evolution reaction (HER) due to their low cost and rich reserves. However, their low efficiency and stability due to inherent corrosion and oxidation in acid media are the main barriers blocking sustainable hydrogen production. Metal-organic frameworks, with both designable metal ion centers and organic ligands, are promising precursors for the one-step synthesis of metal/alloy@carbon composites for HER. Herein, we synthesized FeCo alloy nanoparticles encapsulated in highly nitrogen-doped (8.2 atom%) graphene layers by direct annealing of MOF nanoparticles at 600 degrees C in N-2. The catalyst shows a low onset overpotential (88 mV) and an overpotential of only 262 mV at 10 mA cm(-2). Besides, it exhibits an excellent long-term durability performance even after 10000 cycles due to the protection of the graphene layers. Our density functional theory calculations reveal that the nitrogen dopants can provide adsorption sites for H* and the appropriate increase of nitrogen will decrease Delta G(H*) for HER. Besides, the unique structure of the metal and graphene composites derived from MOFs can also decrease Delta G(H*) thereby promoting the catalytic activity.
机译:非贵金属基催化剂由于其低成本和丰富的储量正在成为氢解反应(HER)的Pt基催化剂的最有希望的替代品。但是,由于酸性介质固有的腐蚀和氧化作用,它们的低效率和稳定性是阻碍可持续制氢的主要障碍。具有可设计的金属离子中心和有机配体的金属有机骨架是用于HER的金属/合金@碳复合材料的一步合成的有前途的前体。本文中,我们通过在600°C和N-2温度下对MOF纳米颗粒进行直接退火,合成了FeCo合金纳米颗粒,该纳米颗粒包裹在高氮掺杂(8.2原子%)的石墨烯层中。催化剂在10 mA cm(-2)时显示出低的起始过电势(88 mV)和仅262 mV的过电势。此外,由于石墨烯层的保护,即使在10000次循环后,它也表现出优异的长期耐久性能。我们的密度泛函理论计算表明,氮掺杂剂可为H *提供吸附位点,适当增加氮含量将降低HER的Delta G(H *)。此外,衍生自MOF的金属和石墨烯复合材料的独特结构还可以降低Delta G(H *),从而提高催化活性。

著录项

  • 来源
    《Energy & environmental science》 |2015年第12期|3563-3571|共9页
  • 作者单位

    Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Dept Mat Sci & Engn, Hefei 230026, Peoples R China|Univ Sci & Technol China, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Hefei 230026, Peoples R China;

    Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Dept Mat Sci & Engn, Hefei 230026, Peoples R China|Univ Sci & Technol China, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Hefei 230026, Peoples R China;

    Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Dept Mat Sci & Engn, Hefei 230026, Peoples R China|Univ Sci & Technol China, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Hefei 230026, Peoples R China;

    Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Dept Mat Sci & Engn, Hefei 230026, Peoples R China|Univ Sci & Technol China, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Hefei 230026, Peoples R China;

    Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Dept Mat Sci & Engn, Hefei 230026, Peoples R China|Univ Sci & Technol China, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Hefei 230026, Peoples R China;

    Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Dept Mat Sci & Engn, Hefei 230026, Peoples R China|Univ Sci & Technol China, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Hefei 230026, Peoples R China|Chinese Acad Sci, Hefei Inst Phys Sci, High Field Magnet Lab, Hefei 230031, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 23:11:38

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号