首页> 外文期刊>Energy & environmental science >Asymmetric Faradaic systems for selective electrochemical separations
【24h】

Asymmetric Faradaic systems for selective electrochemical separations

机译:非对称法拉第体系用于选择性电化学分离

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Ion-selective electrochemical systems are promising for liquid phase separations, particularly for water purification and environmental remediation, as well as in chemical production operations. Redox-materials offer an attractive platform for these separations based on their remarkable ion selectivity. Water splitting, a primary parasitic reaction in aqueous-phase processes, severely limits the performance of such electrochemical processes through significant lowering of current efficiencies and harmful changes in water chemistry. We demonstrate that an asymmetric Faradaic cell with redox-functionalization of both the cathode and the anode can suppress water reduction and enhance ion separation, especially targeting organic micropollutants with current efficiencies of up to 96% towards selective ion-binding. A number of organometallic redox-cathodes with electron-transfer properties matching those of a ferrocene-functionalized anode, and with potential cation selectivity, were used in the asymmetric cell, with cobalt polymers being particularly effective towards aromatic cation adsorption. We demonstrate the viability and superior performance of dual-functionalized asymmetric electrochemical cells beyond their use in energy storage systems; they can be considered as a next-generation technology for aqueous-phase separations, and we anticipate their broad applicability in other processes, including electrocatalysis and sensing.
机译:离子选择性电化学系统有望用于液相分离,特别是用于水净化和环境修复以及化学生产操作中。氧化还原材料基于其出色的离子选择性为这些分离提供了一个有吸引力的平台。水分解是水相过程中的主要寄生反应,它通过显着降低电流效率和水化学中的有害变化,严重限制了此类电化学过程的性能。我们证明具有阴极和阳极氧化还原功能化的不对称法拉第电池可以抑制水减少并增强离子分离,尤其是针对有机微污染物,选择性离子结合的电流效率高达96%。在不对称电池中使用了许多具有与二茂铁官能化的阳极相匹配的电子转移性能且具有潜在的阳离子选择性的有机金属氧化还原阴极,其中钴聚合物对芳族阳离子的吸附特别有效。我们证明了双功能化不对称电化学电池的可行性和优越性能,超出了它们在储能系统中的使用范围;它们可以被认为是用于水相分离的下一代技术,我们预计它们在其他过程中的广泛应用,包括电催化和传感。

著录项

  • 来源
    《Energy & environmental science》 |2017年第5期|1272-1283|共12页
  • 作者单位

    MIT, Dept Chem Engn, Cambridge, MA 02139 USA;

    MIT, Dept Chem Engn, Cambridge, MA 02139 USA;

    MIT, Dept Chem Engn, Cambridge, MA 02139 USA;

    Tech Univ Darmstadt, Ernst Berl Inst Tech & Makromol Chem, Alarich Weiss Str 4, D-64287 Darmstadt, Germany;

    Tech Univ Darmstadt, Ernst Berl Inst Tech & Makromol Chem, Alarich Weiss Str 4, D-64287 Darmstadt, Germany;

    MIT, Dept Chem, Cambridge, MA 02139 USA;

    MIT, Dept Chem Engn, Cambridge, MA 02139 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号