首页> 外文期刊>Energy & environmental science >Interfacial benzenethiol modification facilitates charge transfer and improves stability of cm-sized metal halide perovskite solar cells with up to 20% efficiency
【24h】

Interfacial benzenethiol modification facilitates charge transfer and improves stability of cm-sized metal halide perovskite solar cells with up to 20% efficiency

机译:界面苯硫醇修饰可促进电荷转移,并以高达20%的效率提高厘米级金属卤化物钙钛矿太阳能电池的稳定性

获取原文
获取原文并翻译 | 示例
           

摘要

Metal halide perovskite solar cells (PSC) exhibit outstanding power conversion efficiencies when fabricated as mm-sized devices, but creation of high-performing large-area PSCs that are stable under operating conditions on a sufficiently long timescale still presents a significant challenge. We demonstrate herein that modification of the interface between the perovskite and a spiro-OMeTAD hole-transporting material with commercially available para-substituted benzenethiol molecules facilitates fabrication of cm-sized PSCs with both improved efficiency and stability. Comprehensive analysis using specialised and conventional physical characterisation techniques has been undertaken to demonstrate that band alignment at the perovskite surface can be tuned to improve the solar cell efficiency via adsorption of benzenethiols with a significant dipole moment. Moreover, modification of the perovskite with cyano-substituted benzenethiol enhances charge extraction and reduces charge recombination in the devices. These effects enable improvements in the power conversion efficiency of PSCs from 19.0 to 20.2% and from 18.5 to 19.6% under 1 sun AM 1.5G irradiation with 0.16 and 1.00 cm(2) apertures, respectively. Most importantly, benzenethiol-modified perovskite solar cells retain more than 80% of the initial performance after 185 h of continuous operation at 50% relative humidity and 50 degrees C device temperature under 1 sun irradiation, while devices with no interfacial modification undergo continuous deterioration down to 35% of the initial efficiency. These significant improvements are provided by a very simple and highly reproducibile modification procedure that can be readily adopted in other types of PSCs.
机译:金属卤化物钙钛矿太阳能电池(PSC)在制造为mm尺寸的器件时表现出出色的功率转换效率,但是在操作条件下足够长的时间内稳定运行的高性能大面积PSC仍然提出了巨大挑战。我们在本文中证明,利用可商购的对位取代苯硫醇分子对钙钛矿和螺旋-OMeTAD空穴传输材料之间的界面进行修饰,可促进厘米级PSC的制造,并提高效率和稳定性。已经进行了使用专用和常规物理表征技术的综合分析,以证明可以调节钙钛矿表面的能带排列,以通过具有显着偶极矩的苯硫酚吸附来提高太阳能电池的效率。此外,用氰基取代的苯硫醇对钙钛矿进行改性可增强电荷提取并减少器件中的电荷重组。这些效果使得在1个阳光AM 1.5G照射下,具有0.16和1.00 cm(2)孔径的PSC的功率转换效率分别从19.0%提高到20.2%,从18.5%提高到19.6%。最重要的是,苯硫酚改性的钙钛矿太阳能电池在1次日光照射下在50%相对湿度和50摄氏度器件温度下连续运行185小时后,保持了最初性能的80%以上,而没有界面改性的器件经历了持续劣化达到初始效率的35%。这些重要的改进是通过非常简单且高度可重复的修改程序提供的,该修改程序可轻松用于其他类型的PSC。

著录项

  • 来源
    《Energy & environmental science》 |2018年第7期|1880-1889|共10页
  • 作者单位

    Monash Univ, Sch Chem, Clayton, Vic 3800, Australia;

    Monash Univ, Dept Chem Engn, Clayton, Vic 3800, Australia;

    Monash Univ, Dept Mat Sci & Engn, Clayton, Vic 3800, Australia;

    CSIRO Mfg, Clayton, Vic 3168, Australia;

    CSIRO Mfg, Clayton, Vic 3168, Australia;

    Monash Univ, Dept Mat Sci & Engn, Clayton, Vic 3800, Australia;

    Monash Univ, Dept Chem Engn, Clayton, Vic 3800, Australia;

    Monash Univ, Dept Mat Sci & Engn, Clayton, Vic 3800, Australia;

    Monash Univ, Dept Mat Sci & Engn, Clayton, Vic 3800, Australia;

    Monash Univ, Sch Chem, Clayton, Vic 3800, Australia;

    Monash Univ, Dept Chem Engn, Clayton, Vic 3800, Australia;

    Monash Univ, Sch Chem, Clayton, Vic 3800, Australia;

    Monash Univ, Dept Mat Sci & Engn, Clayton, Vic 3800, Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号