首页> 外文期刊>Energy & environmental science >Integrated mechanistic engineering models and macroeconomic input-output approach to model physical economy for evaluating the impact of transition to a circular economy
【24h】

Integrated mechanistic engineering models and macroeconomic input-output approach to model physical economy for evaluating the impact of transition to a circular economy

机译:综合机械工程模型及宏观经济投入输出方法模型物理经济评估转型对循环经济的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Sustainable transition to low carbon and zero waste economy requires a macroscopic evaluation of opportunities and impact of adopting emerging technologies in a region. However, a full assessment of current physical flow and waste is a tedious task, thus leading to a lack of comprehensive assessment before scale up and adoption of emerging technologies. Utilizing the mechanistic models developed for engineering and biological systems with the macroeconomic framework of Input-Output models, we propose a novel integrated approach to fully map the physical economy, that automates the process of mapping industrial flows and wastes in a region. The approach is demonstrated by mapping the agro-based physical economy of the state of Illinois, USA by using mechanistic models for 10 agro-based sectors, which have a high impact on waste generation. Each model mechanistically simulates the material transformation processes in the economic sector and provides the necessary material flow information for physical economy mapping. The model for physical economy developed in the form of a Physical Input-Output Table (PIOT) captures the interindustry physical interactions in the region and waste flows, thus providing insight into the opportunities to implement circular economy strategies i.e., adoption of recycling technologies on a large scale. In Illinois, adoption of technologies for industrial waste-water and hog manure recycling will have the highest impact by reducing 62% of hog industry waste outputs, 99% of soybean hull waste, and 96% of dry corn milling (corn ethanol production) waste reduction. A small % reduction in nitrogen fertilizer manufacturing waste was also observed. The physical economy model revealed that the urea sector had the highest material use of 5.52 x 10(8) tons and green bean farming with the lowest material use of 1.30 x 10(5) tons for the year modeled (2018). The mechanistic modeling also allowed elemental flows across the physical economy to be captured, with the urea sector using 8.25 x 10(7) tons of elemental carbon per operation-year (highest) and green bean farming using 3.90 x 10(4) tons of elemental carbon per operation-year (least). The approach proposed here establishes a connection between engineering and physical economy modeling community for standardizing the mapping of physical economy that can provide insights for successfully transitioning to a low carbon and zero waste circular economy.
机译:对低碳和零废物经济的可持续转型需要对采用区域中采用新兴技术的机会和影响的宏观评估。然而,对目前的物理流量和废物完全评估是一项繁琐的任务,从而导致在扩大和采用新兴技术之前缺乏综合评估。利用为工程和生物系统开发的机械模型进行了宏观经济框架的输入 - 输出模型,我们提出了一种新颖的综合方法来充分映射物理经济,自动化工业流动和浪费在一个地区的过程。通过利用10个农业基部门的机械模型来绘制伊利诺伊州的农业基地的农业型物理经济来证明该方法。每个模型机械地模拟经济部门的材料转换过程,并为物理经济映射提供必要的材料流量信息。以物理输入输出表(PIOT)形式开发的物理经济模型捕获了该地区和废物流量的互及物理相互作用,从而深入了解实现循环经济策略的机会,即采用回收技术大规模。在伊利诺伊州,通过减少工业废水和猪粪粪便回收的技术将通过减少& 62%的猪行业废物产出,& 99%的大豆船体废物,& 96%的干玉米碾磨(玉米乙醇生产)废物减少。还观察到氮肥制造废物的少量减少。物理经济模型揭示了尿素部门的材料使用最高5.52 x 10(8)吨和绿豆种植,用于模型的最低材料使用为1.30 x 10(5)吨(2018)。机械建模也允许捕获物理经济的元素流量,尿素部门使用8.25 x 10(7)吨元素碳(最高)和青豆养殖,使用3.90 x 10(4)吨每个运营年度的元素碳(至少)。这里提出的方法建立了工程与物理经济建模社区的联系,用于标准化物理经济的映射,可以提供成功过渡到低碳和零废物循环经济的见解。

著录项

  • 来源
    《Energy & environmental science》 |2021年第9期|5017-5034|共18页
  • 作者单位

    Purdue Univ Agr & Biol Engn W Lafayette IN 47907 USA;

    Purdue Univ Agr & Biol Engn W Lafayette IN 47907 USA|Purdue Univ Environm & Ecol Engn W Lafayette IN 47907 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-19 03:12:12

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号