...
首页> 外文期刊>Energy & environmental science >Gram-scale synthesis of carbon quantum dots with a large Stokes shift for the fabrication of eco-friendly and high-efficiency luminescent solar concentrators
【24h】

Gram-scale synthesis of carbon quantum dots with a large Stokes shift for the fabrication of eco-friendly and high-efficiency luminescent solar concentrators

机译:大型斯托克斯的碳量子点的克尺寸合成,用于制造环保和高效发光太阳能集中器的制造

获取原文
获取原文并翻译 | 示例

摘要

Luminescent solar concentrators (LSCs) are large-area sunlight collectors coupled to small area solar cells, for efficient solar-to-electricity conversion. The three key points for the successful market penetration of LSCs are: (i) removal of light losses due to reabsorption during light collection; (ii) high light-to-electrical power conversion efficiency of the final device; (iii) long-term stability of the LSC structure related to the stability of both the matrix and the luminophores. Among various types of fluorophores, carbon quantum dots (C-dots) offer a wide absorption spectrum, high quantum yield, non-toxicity, environmental friendliness, low-cost, and eco-friendly synthetic methods. However, they are characterized by a relatively small Stokes shift, compared to inorganic quantum dots, which limits the highest external optical efficiency that can be obtained for a large-area single-layer LSC (100 cm(2)) based on C-dots below 2%. Herein, we report highly efficient large-area LSCs (100-225 cm(2)) based on colloidal C-dots synthesized via a space-confined vacuum-heating approach. This one batch reaction could produce Gram-scale C-dots with a high quantum yield (QY) (similar to 65%) using eco-friendly citric acid and urea as precursors. Thanks to their very narrow size distribution, the C-dots produced via the space-confined vacuum-heating approach had a large Stokes shift of 0.53 eV, 50% larger than C-dots synthesized via a standard solvothermal reaction using the same precursors with a similar absorption range. The large-area LSC (15 x 15 x 0.5 cm(3)) prepared by using polyvinyl pyrrolidone (PVP) polymer as a matrix exhibited an external optical efficiency of 2.2% (under natural sun irradiation, 60 mW cm(-2), uncharacterized spectrum). After coupling to silicon solar cells, the LSC exhibited a power conversion efficiency (PCE) of 1.13% under natural sunlight illumination (20 mW cm(-2), uncharacterized spectrum). These unprecedented results were obtained by completely suppressing the reabsorption losses during light collection, as proved by optical spectroscopy. These findings demonstrate the possibility of obtaining eco-friendly, high-efficiency, large-area LSCs through scalable production techniques, paving the way to the lab-to-fab transition of this kind of devices.
机译:发光太阳能集中器(LSC)是大区域阳光收集器,耦合到小型区域太阳能电池,用于高效的太阳能电力转换。 LSC的成功渗透的三个关键要点是:(i)在光收集期间由于重吸收而去除光损失; (ii)最终装置的高光电力转换效率; (iii)与基质和发光体的稳定性有关的LSC结构的长期稳定性。在各种类型的荧光团中,碳量子点(C点)提供宽吸收光谱,高量子产率,无毒,环境友好,低成本和环保合成方法。然而,它们的特征在于与无机量子点相比的相对小的斯托克斯偏移,这限制了基于C-的大面积单层LSC(> 100cm(2))可以获得的最高外部光学效率。点低于2%。这里,我们报告高效的大面积LSC(100-225cm(2)),基于通过空间限制真空加热方法合成的胶体C点。这种间歇反应可以使用Eco友好型柠檬酸和尿素作为前体来产生高量子产率(QY)(类似于65%)的克级C点。由于其非常窄的尺寸分布,通过空间限制真空加热方法产生的C点的C点具有0.53eV的大型斯托克斯偏移,比通过使用相同前体的标准溶剂热反应合成的C点大的50%。类似的吸收范围。通过使用聚乙烯吡咯烷酮(PVP)聚合物作为基质制备的大面积LSC(15×15×0.5cm(3))表现出2.2%的外光学效率(在天然阳光照射下,60mW厘米(-2),无表谱)。在耦合到硅太阳能电池之后,LSC在天然阳光照射下表现出1.13%的功率转换效率(PCE)(20mW cm(-2),无表称光谱)。通过光谱法证明,通过完全抑制重吸收损失来获得这些前所未有的结果。这些调查结果证明了通过可扩展的生产技术获得环保,高效率,大面积LSC的可能性,铺平了这种装置的实验室转变的方式。

著录项

  • 来源
    《Energy & environmental science》 |2021年第1期|396-406|共11页
  • 作者单位

    Qingdao Univ State Key Lab Biofibers & Ecotext 308 Ningxia Rd Qingdao 266071 Peoples R China|Qingdao Univ Univ Ind Joint Ctr Ocean Observat & Broadband Com Coll Phys 308 Ningxia Rd Qingdao 266071 Peoples R China;

    Qingdao Univ Univ Ind Joint Ctr Ocean Observat & Broadband Com Coll Phys 308 Ningxia Rd Qingdao 266071 Peoples R China;

    Lulea Univ Technol Div Mat Sci Dept Engn Sci & Math S-97187 Lulea Sweden;

    Politecn Milan Dipartimento Fis Via G Ponzio 34-3 I-20133 Milan Italy|Politecn Milan Dipartimento Energia Via G Ponzio 34-3 I-20133 Milan Italy|IFN CNR Piazza L da Vinci 32 I-20133 Milan Italy;

    Politecn Milan Dipartimento Fis Via G Ponzio 34-3 I-20133 Milan Italy|Politecn Milan Dipartimento Energia Via G Ponzio 34-3 I-20133 Milan Italy|IFN CNR Piazza L da Vinci 32 I-20133 Milan Italy;

    Qingdao Univ State Key Lab Biofibers & Ecotext 308 Ningxia Rd Qingdao 266071 Peoples R China|Qingdao Univ Coll Text & Clothing 308 Ningxia Rd Qingdao 266071 Peoples R China;

    Qingdao Univ State Key Lab Biofibers & Ecotext 308 Ningxia Rd Qingdao 266071 Peoples R China|Qingdao Univ Coll Text & Clothing 308 Ningxia Rd Qingdao 266071 Peoples R China;

    Qingdao Univ State Key Lab Biofibers & Ecotext 308 Ningxia Rd Qingdao 266071 Peoples R China;

    Qingdao Univ State Key Lab Biofibers & Ecotext 308 Ningxia Rd Qingdao 266071 Peoples R China;

    Qingdao Univ State Key Lab Biofibers & Ecotext 308 Ningxia Rd Qingdao 266071 Peoples R China;

    Lulea Univ Technol Div Mat Sci Dept Engn Sci & Math S-97187 Lulea Sweden|Ca Foscari Univ Venice Dept Mol Sci & Nano Syst Via Torino 155 I-30172 Venice Italy;

    Wuhan Univ Technol State Key Lab Silicate Mat Architectures 122 Luoshi Rd Wuhan 430070 Hubei Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号