首页> 外文期刊>Energy & environmental science >Harnessing hierarchical architectures to trap light for efficient photoelectrochemical cells
【24h】

Harnessing hierarchical architectures to trap light for efficient photoelectrochemical cells

机译:利用分层架构捕获光,以形成高效的光电化学电池

获取原文
获取原文并翻译 | 示例
           

摘要

Photoelectrochemical (PEC) cells including dye-sensitized solar cells and photoelectrochemical water splitting devices are a promising approach to effectively harvesting and storing solar energy, but the contradictory requirements on the device design with sustainable materials between charge collection and light absorption hinder their development. An ideal material possessing simultaneously wide and strong photo-absorption and high electrical conductivity is hard to come by, but these features can be built into hierarchical structures by rationally combining materials with multiple dimensions and multiple functions, thereby solving the contradiction between charge collection and light absorption. In this article, we review recent progress in the design and utilization of hierarchical architectures here, specifically referring to structures with a combination of 0-3D entities, for PEC cells. Inspired by the natural photosynthesis system, which divides the overall task among chloroplasts, foliages, trunks and branches, we split the hierarchical structure into three functional parts, a surface coating layer for anti-reflection and charge transfer, a light absorbing block and a support structure good in anti-transmittance and charge transport. In this way, the above-mentioned contradiction in solar energy conversion can be solved by decoupling the charge collection from optical propagation. The design ideas and the underlying mechanisms of each part of the hierarchical structure are discussed in detail. In general, appropriately designing each individual unit to control light absorption and charge transport is the main strategy to trap light and to direct charge carriers. Finally, the prospects and future directions are presented.
机译:包括染料敏化太阳能电池和光电化学水分解装置在内的光化学(PEC)电池是有效收集和存储太阳能的有前途的方法,但是在电荷收集和光吸收之间采用可持续材料的装置设计上的矛盾要求阻碍了它们的发展。很难同时获得具有宽而强的光吸收性和高导电性的理想材料,但是可以通过合理地组合具有多种尺寸和多功能的材料,将这些特征构建为分层结构,从而解决电荷收集和光之间的矛盾。吸收。在本文中,我们在这里回顾了分层体系结构设计和利用的最新进展,尤其是针对PEC单元的0-3D实体组合结构。受自然光合作用系统的启发,该系统将整体任务划分为叶绿体,树叶,树干和树枝,我们将层次结构分为三个功能部分,即用于抗反射和电荷转移的表面涂层,吸光块和支撑物具有良好的抗透射和电荷传输的结构。以这种方式,可以通过将电荷收集与光传播解耦来解决太阳能转换中的上述矛盾。详细讨论了层次结构各部分的设计思想和底层机制。通常,适当设计每个单独的单元以控制光吸收和电荷传输是捕获光并引导电荷载流子的主要策略。最后,介绍了前景和未来方向。

著录项

  • 来源
    《Energy & environmental science》 |2020年第3期|660-684|共25页
  • 作者

  • 作者单位

    Peking Univ Shenzhen Grad Sch Sch Chem Biol & Biotechnol Guangdong Key Lab Nanomicro Mat Res Shenzhen Peoples R China|SYSU Key Lab Low Carbon Chem & Energy Conservat Guangd MOE Key Lab Bioinorgan & Synthet Chem Sch Chem KLGHEI Environm & Energy Chem Guangzhou Peoples R China;

    Peking Univ Shenzhen Grad Sch Sch Chem Biol & Biotechnol Guangdong Key Lab Nanomicro Mat Res Shenzhen Peoples R China;

    SYSU Key Lab Low Carbon Chem & Energy Conservat Guangd MOE Key Lab Bioinorgan & Synthet Chem Sch Chem KLGHEI Environm & Energy Chem Guangzhou Peoples R China;

    Peking Univ Shenzhen Grad Sch Sch Chem Biol & Biotechnol Guangdong Key Lab Nanomicro Mat Res Shenzhen Peoples R China|Hong Kong Univ Sci & Technol Dept Chem Kowloon Clear Water Bay Hong Kong Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号