...
首页> 外文期刊>Energy & environmental science >Cable-like Ru/WNO@C nanowires for simultaneous high-efficiency hydrogen evolution and low-energy consumption chlor-alkali electrolysis
【24h】

Cable-like Ru/WNO@C nanowires for simultaneous high-efficiency hydrogen evolution and low-energy consumption chlor-alkali electrolysis

机译:电缆状Ru / WNO @ C纳米线,用于同时高效析氢和低能耗氯碱电解

获取原文
获取原文并翻译 | 示例

摘要

The rational design of high-efficiency and stable hydrogen evolution electrocatalysts under the condition of strong alkali is the key issue for the combination of hydrogen production with low-energy consumption chlor-alkali electrolysis. Herein, ultra-small Ru nanoclusters anchored on WNO nanowires covered by few-layer N-doped carbon (named Ru/WNO@C) were synthesized through a simple pyrolysis method. We demonstrate a comprehensive understanding of the hydrogen evolution reaction (HER) performance of such cable-like Ru/WNO@C electrocatalysts by combining experimental and computational techniques. The optimal catalyst Ru/WNO@C (Ru wt% = 3.37%) delivers a record-low overpotential of 2 mV at a current density of 10 mA cm(-2), a low Tafel slope of 33 mV dec(-1), a high mass activity of 4095.6 mA mg(-1) at an overpotential of 50 mV, and long-term durability in 1 M KOH. The superior HER activity of Ru/WNO@C is revealed to be caused by two factors using density functional theory (DFT) calculations: a moderate H adsorption free energy (Delta G(H*) = -0.21 eV) and a rather low water dissociation barrier (Delta G(B) = 0.27 eV). Specifically, Ru/WNO@C (Ru wt% = 3.37%) shows more remarkable HER performance than industrial low carbon steel under a simulated chlor-alkali electrolyte at 90 degrees C, making it an efficient cathode candidate applied in chlor-alkali electrolysis. Finally, a homemade ionic membrane electrolyzer with a Ru/WNO@C (Ru wt% = 3.37%) (-)//RuO2/IrO2-coated Ti-mesh (+) couple presents a low cell voltage of 2.48 V at a current density of 10 mA cm(-2), which is 320 mV lower than the value for the low carbon steel (-)//RuO2/IrO2-coated Ti-mesh (+) (2.8 V) couple, exhibiting robust stability for 25 h. This work provides a meaningful reference for the design and fabrication of efficient and stable alkaline HER catalysts, and realizes high-efficiency hydrogen production and low-energy consumption chlor-alkali electrolysis at the same time.
机译:在强碱条件下合理设计高效稳定的析氢电催化剂是制氢与低能耗氯碱电解相结合的关键问题。在此,通过简单的热解法合成了锚固在被少量N掺杂碳覆盖的WNO纳米线上的超小型Ru纳米团簇(命名为Ru / WNO @ C)。通过结合实验和计算技术,我们证明了对此类电缆状Ru / WNO @ C电催化剂的氢释放反应(HER)性能的全面理解。最佳催化剂Ru / WNO @ C(Ru wt%= 3.37%)在10 mA cm(-2)的电流密度,33 mV dec(-1)的低Tafel斜率下提供了创纪录的2 mV的超低电势,在50 mV的超电势下具有4095.6 mA mg(-1)的高质量活性,并在1 M KOH中具有长期耐久性。通过使用密度泛函理论(DFT)计算,发现Ru / WNO @ C的优异HER活性是由两个因素引起的:中等的H吸附自由能(Delta G(H *)= -0.21 eV)和相当低的水解离势垒(Delta G(B)= 0.27 eV)。具体地说,在90℃的模拟氯碱电解质下,Ru / WNO @ C(Ru重量%= 3.37%)显示出比工业低碳钢更出色的HER性能,使其成为氯碱电解中有效的阴极候选物。最后,带有Ru / WNO @ C(Ru wt%= 3.37%)(-)// RuO2 / IrO2涂层的Ti-Mesh(+)对的自制离子膜电解槽在当前电流下的电池电压低至2.48 V密度为10 mA cm(-2),比低碳钢(-)// RuO2 / IrO2涂层的Ti-Mesh(+)(2.8 V)对的值低320 mV,对25碳氢化合物显示出稳定的稳定性H。这项工作为高效稳定的碱性HER催化剂的设计和制造提供了有意义的参考,同时实现了高效制氢和低能耗氯碱电解。

著录项

  • 来源
    《Energy & environmental science 》 |2019年第8期| 2569-2580| 共12页
  • 作者单位

    Northeast Normal Univ, Fac Chem, Minist Educ, Key Lab Polyoxometalate Sci, Changchun 130024, Jilin, Peoples R China;

    Northeast Normal Univ, Fac Chem, Minist Educ, Key Lab Polyoxometalate Sci, Changchun 130024, Jilin, Peoples R China;

    Northeast Normal Univ, Fac Chem, Minist Educ, Key Lab Polyoxometalate Sci, Changchun 130024, Jilin, Peoples R China;

    Northeast Normal Univ, Fac Chem, Minist Educ, Key Lab Polyoxometalate Sci, Changchun 130024, Jilin, Peoples R China;

    Northeast Normal Univ, Fac Chem, Minist Educ, Key Lab Polyoxometalate Sci, Changchun 130024, Jilin, Peoples R China;

    Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Peoples R China;

    Northeast Normal Univ, Fac Chem, Minist Educ, Key Lab Polyoxometalate Sci, Changchun 130024, Jilin, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号