...
首页> 外文期刊>Energy & environmental science >Real-time imaging of activation and degradation of carbon supported octahedral Pt–Ni alloy fuel cell catalysts at the nanoscale using in situ electrochemical liquid cell STEM
【24h】

Real-time imaging of activation and degradation of carbon supported octahedral Pt–Ni alloy fuel cell catalysts at the nanoscale using in situ electrochemical liquid cell STEM

机译:使用原位电化学液体电池STEM在纳米级实时成像碳载八面体Pt-Ni合金燃料电池催化剂的活化和降解

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Octahedrally shaped Pt-Ni alloy nanoparticles on carbon supports have demonstrated unprecedented electrocatalytic activity for the oxygen reduction reaction (ORR), sparking interest as catalysts for low-temperature fuel cell cathodes. However, deterioration of the octahedral shape that gives the catalyst its superior activity currently prohibits the use of shaped catalysts in fuel cell devices, while the structural dynamics of the overall catalyst degradation are largely unknown. We investigate the time-resolved degradation pathways of such a Pt-Ni alloy catalyst supported on carbon during cycling and startup/shutdown conditions using an in situ STEM electrochemical liquid cell, which allows us to track changes happening over seconds. Thereby we can precisely correlate the applied electrochemical potential with the microstructural response of the catalyst. We observe changes of the nanocatalysts' structure, monitor particle motion and coalescence at potentials that corrode carbon, and investigate the dissolution and redeposition processes of the nanocatalyst under working conditions. Carbon support motion, particle motion, and particle coalescence were observed as the main microstructural responses to potential cycling and holds in regimes where carbon corrosion happens. Catalyst motion happened more severely during high potential holds and sudden potential changes than during cyclic potential sweeps, despite carbon corrosion happening during both, as suggested by ex situ DEMS results. During an extremely high potential excursion, the shaped nanoparticles became mobile on the carbon support and agglomerated facet-to-facet within 10 seconds. These experiments suggest that startup/shutdown potential treatments may cause catalyst coarsening on a much shorter time scale than full collapse of the carbon support. Additionally, the varying degrees of attachment of particles on the carbon support indicates that there is a distribution of interaction strengths, which in the future should be optimized for shaped particles. We further track the dissolution of Ni nanoparticles and determine the dissolution rate as a function of time for an individual nanoparticle - which occurs over the course of a few potential cycles for each particle. This study provides new visual understanding of the fundamental structural dynamics of nanocatalysts during fuel cell operation and highlights the need for better catalyst-support anchoring and morphology for allowing these highly active shaped catalysts to become useful in PEM fuel cell applications.
机译:碳载体上的八面体形状的Pt-Ni合金纳米粒子对氧还原反应(ORR)表现出前所未有的电催化活性,引起人们对用作低温燃料电池阴极催化剂的兴趣。然而,使催化剂具有优异活性的八面体形状的劣化目前禁止在燃料电池装置中使用成形催化剂,而整体催化剂降解的结构动力学在很大程度上是未知的。我们使用原位STEM电化学液体电池研究了循环和启动/关闭条件下碳载Pt-Ni合金催化剂在时间上的降解途径,这使我们能够追踪数秒内发生的变化。因此,我们可以精确地将施加的电化学势与催化剂的微结构响应相关联。我们观察纳米催化剂结构的变化,在腐蚀碳的电势下监测粒子运动和聚结,并研究纳米催化剂在工作条件下的溶解和再沉积过程。观察到碳载体运动,颗粒运动和颗粒聚结是对潜在循环的主要微观结构响应,并保持在发生碳腐蚀的状态。异位DEMS结果表明,尽管在这两个过程中均发生了碳腐蚀,但在高电势保持和突然电势变化期间,催化剂运动比在循环电势扫描期间更为严重。在极高的潜在偏移中,成型的纳米颗粒在碳载体上变得可移动,并在10秒内以小平面的方式凝聚。这些实验表明,与碳载体完全崩溃相比,启动/关闭潜在处理可能会在更短的时间范围内导致催化剂变粗。此外,颗粒在碳载体上的附着程度不同,表明存在相互作用强度的分布,将来应针对成型颗粒进行优化。我们进一步跟踪Ni纳米颗粒的溶解情况,并确定单个纳米颗粒的溶解速度与时间的关系-在每个颗粒的几个潜在循环过程中会发生这种情况。这项研究对燃料电池运行过程中纳米催化剂的基本结构动力学提供了新的视觉理解,并强调了对更好的催化剂载体锚固和形态的需求,以使这些高活性成型催化剂在PEM燃料电池应用中变得有用。

著录项

  • 来源
    《Energy & environmental science》 |2019年第8期|2476-2485|共10页
  • 作者单位

    Tech Univ Berlin, Dept Chem, Electrochem Energy Catalysis & Mat Sci Lab, D-10623 Berlin, Germany;

    Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14850 USA;

    Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14850 USA;

    Tech Univ Berlin, Dept Chem, Electrochem Energy Catalysis & Mat Sci Lab, D-10623 Berlin, Germany;

    Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14850 USA|Cornell Univ, Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14850 USA;

    Tech Univ Berlin, Dept Chem, Electrochem Energy Catalysis & Mat Sci Lab, D-10623 Berlin, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号