首页> 外文期刊>Energy Conversion & Management >Investigation of the performance parameters and temperature distribution in fuel rod dependent on operation periods and first wall loads in fusion-fission reactor system fueled with ThO_2
【24h】

Investigation of the performance parameters and temperature distribution in fuel rod dependent on operation periods and first wall loads in fusion-fission reactor system fueled with ThO_2

机译:ThO_2为燃料的聚变裂变反应堆系统中取决于运行时间和第一壁负荷的燃料棒性能参数和温度分布的研究

获取原文
获取原文并翻译 | 示例
           

摘要

The neutronic performance parameters, fissile breeding and temperature distribution in the fuel rod are investigated for different coolants ('He, CO_2', 'Li_2BeF_4', 'Li', and 'Li_(17)Pb_(83)') in the fissile fuel breeding zone with volume ratios of V_(coolant)/V_(fuel), ε, (0.5,1,2) under various first wall loads (P_w = 2-10 MWm~(-2)) in a fusion-fission reactor fueled with ThO_2. Depending on the type of coolant in the fission zone, first wall loads and volume ratios, fusion power plant operation periods between 1 and 4 years are evaluated to achieve a fissile fuel enrichment quality between 1.2274% and 13.7305% in the above mentioned situation for intervals of half month and by plant factor of 75%. A fusion reactor with (D, T) reaction acts as an external high energetic neutron source. The fissile fuel zone, containing 10 fuel rod rows in the radial direction, covers the cylindrical fusion plasma chamber with 300 cm chamber dimension. At the end of four years, the cumulative fissile fuel enrichment (CFFE) values, indicating rejuvenation performance, increased to 10.184%, 12.218%, 9.650% and 11.089% from 0% in gas, flibe, natural lithium and eutectic lithium coolant blankets with ε = 0.5 for 10 MWm~(-2), respectively, without reaching the melting point of the fuel material. However, for ε = 1, the CFFE values increased to 10.59% (the best CFFE value for gas coolant), 11.372%, 10.414% (the best CFFE value for natural lithium coolant) and 10.963% from 0% in the above mentioned coolants for 10 MWm~(-2), respectively. In the same way, for ε = 2, the CFFE increased to 10.181%, 13.7305% (the best CFFE value for all coolants), 9.1369% and 11.4809% (the best CFFE value for eutectic lithium coolant) for 10 MWm~(-2), respectively. At the beginning of the operation period, for ε = 0.5, the tritium breeding ratio (TBR) values, being about 0.9092, 0.7075, 0.7921 and 0.9512 for the above mentioned coolants, respectively, at the end of four years increased to 1.2924, 1.1475, 1.0724 and 1.441 (the highest TBR value for all blankets) for 10 MWm~(-2). For ε= 1, these increments are 1.3067, 1.2303, 1.1653 and 1.4033 for 10 MWm~(-2). However, for ε = 2, these values are 1.2256, 0.9993, 0.9341 and 1.4069 for 10 MWm~(-2) without reaching the melting point of the fuel material. For ε = 0.5, the blanket energy multiplication (M) increases to 2.7349, 2.8045, 2.5685 and 2.8183 (the highest M value for all blankets) for 10 MWm~(-2) from 2.1534, 2.0251, 2.0918 and 2.0793 in the blankets cooled with gas, flibe, natural lithium and eutectic lithium coolants, respectively, at the end of four years. These increments become 2.6707, 2.7301, 2.4332 and 2.7812 for 10 MWm~(-2) from 2.1037, 1.8985, 2.004 and 1.9874, respectively, for ε = 1. However, the blanket energy multiplication (M) increases to 2.4122, 2.4573, 2.1413 and 2.3800 for 10 MWm~(-2) from 2.0196, 1.7323, 1.8658 and 1.8303, respectively, for ε = 2. The maximum temperatures in the centerline of the fuel rods have not exceeded the melting point of the fuel material for all coolants and E under changing first wall loads between 2 and 10 MWm~(-2) during the operation periods. While the maximum CFFE values have been obtained in fuel rod row#10 in the gas, natural lithium and eutectic lithium coolant blankets, it has been obtained in fuel rod row#l in the flibe coolant blanket for all E and P_w. Therefore, the investigated hybrid blankets are self-sufficient for all coolant and volume fractions and P_w = 10 MWm~(-2). The best neutron economy has been shown by. flibe.
机译:针对易裂变燃料中的不同冷却剂(“ He,CO_2”,“ Li_2BeF_4”,“ Li”和“ Li_(17)Pb_(83)”)研究了燃料棒中子的性能参数,易裂变品种和温度分布在聚变裂变反应堆中,在各种第一壁载荷(P_w = 2-10 MWm〜(-2))下,体积比为V_(冷却剂)/ V_(燃料),ε(0.5、1,2)的繁殖区与ThO_2。根据裂变区中冷却剂的类型,第一壁负荷和体积比,对聚变电站运行1至4年的运行时间进行评估,以在上述情况下间隔一段时间获得1.2274%至13.7305%的裂变燃料富集质量。半个月,按工厂因子的75%计算。具有(D,T)反应的聚变反应堆充当外部高能中子源。沿径向方向包含10个燃料棒排的易裂变燃料区覆盖了300厘米室尺寸的圆柱形聚变等离子体室。四年结束时,表明可再生性能的累积易裂变燃料浓缩(CFFE)值从气体,氟利昂,天然锂和低共熔锂冷却剂毯中的0%增至10.184%,12.218%,9.650%和11.089%。对于10 MWm〜(-2),ε= 0.5,而未达到燃料材料的熔点。但是,对于ε= 1,CFFE值从上述冷却剂中的0%增加到10.59%(气体冷却剂的最佳CFFE值),11.372%,10.414%(天然锂冷却剂的最佳CFFE值)和10.963%。分别为10 MWm〜(-2)同样,对于ε= 2,对于10 MWm〜(-),CFFE分别增至10.181%,13.7305%(所有冷却剂的最佳CFFE值),9.1369%和11.4809%(共晶锂冷却剂的最佳CFFE值)。 2)。在运行期开始时,对于ε= 0.5,上述冷却剂的the繁殖比(TBR)值分别为0.9092、0.7075、0.7921和0.9512,在四年结束时分别增加到1.2924、1.1475 10 MWm〜(-2)的1.0724和1.441(所有毯子的最高TBR值)。对于ε= 1,对于10 MWm〜(-2),这些增量为1.3067、1.2303、1.1653和1.4033。然而,对于ε= 2,对于10 MWm〜(-2),这些值分别为1.2256、0.9993、0.9341和1.4069,而未达到燃料材料的熔点。对于ε= 0.5,10 MWm〜(-2)的毯子能量乘积(M)从2.1534、2.0251、2.0918和2.0793增加到2.7349、2.8045、2.5685和2.8183(所有毯子的最高M值)四年结束时分别使用天然气,氟利昂,天然锂和共晶锂冷却剂。对于10 MWm〜(-2),这些增量分别从ε= 1的2.1037、1.8985、2.004和1.9874变为2.6707、2.7301、2.4332和2.7812,但是,毯式能量乘积(M)增加到2.4122、2.4573、2.1413对于ε= 2,分别从2.0196、1.7323、1.8658和1.8303获得10MWm〜(-2)和2.3800的燃料。燃料棒中心线的最高温度未超过所有冷却剂和燃料的熔点。在运行期间,在2到10 MWm〜(-2)之间变化的第一壁负载下,E处于E。尽管在气体,天然锂和共晶锂冷却剂层中的燃料棒排#10中获得了最大CFFE值,但对于所有E和P_w,都在游离冷却剂层中的燃料棒排#1中获得了最大CFFE值。因此,所研究的混合毯对于所有冷却剂和体积分数都是自给自足的,P_w = 10 MWm〜(-2)。最佳中子经济性已被证明。跳蚤

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号