...
首页> 外文期刊>Energy Conversion & Management >Numerical simulation about interaction between pressure swirl spray and hot porous medium
【24h】

Numerical simulation about interaction between pressure swirl spray and hot porous medium

机译:压力旋流喷雾与热多孔介质相互作用的数值模拟

获取原文
获取原文并翻译 | 示例
           

摘要

To gain a deep understanding of the process of the fuel/air mixture formation and the role of the PM (porous medium) in mixture homogenization and combustion in a PM engine, the interaction of a pressure swirl spray and a hot porous medium was investigated computationally by using the modified KIVA-3V code in which an improved spray/hot wall interaction model was incorporated. The improved spray/hot wall interaction model fits into the regime above the Leidenfrost temperature, determines the properties of post-impingement fuel droplets and the quantity of heat transfer between the fuel droplets and a hot surface. An evaporating fuel spray impingement on a hot plane surface was simulated for validating the reasonability of the improved spray/hot wall interaction model. Numerical results compared well with experimental data for spray radius in the liquid and vapor phases. The linearized instability sheet atomization (LISA) model has been used to describe the atomization and breakup processes of the spray from the pressure swirl atomizers. The structure of a hot porous medium with porosity of 0.88 was established using a simple model. The injection, movement and vaporization of the fuel droplets inside the PM and their impingement on the block edges was computed. Consequently, the spatial distribution and time evolution of the temperature and fuel concentration inside the PM were obtained. The influences of the operating parameters, including ambient pressure and spray cone angle, on the characteristics of the fuel spray and mixture formation were discussed based on the numerical simulations. The basic aspects of the interaction between the pressure swirl spray and the hot porous medium have been revealed by the computational results.
机译:为了深入了解燃料/空气混合物的形成过程以及PM(多孔介质)在PM发动机中混合物均质化和燃烧中的作用,对压力旋流喷雾和热多孔介质的相互作用进行了计算研究通过使用改进的KIVA-3V代码,其中合并了改进的喷雾/热墙相互作用模型。改进的喷雾/热壁相互作用模型适合莱顿弗罗斯特温度以上的状态,确定了撞击后燃料滴的特性以及燃料滴与热表面之间的热传递量。为了验证改进的喷雾/热壁相互作用模型的合理性,对蒸发的燃料喷雾撞击在热平面上进行了模拟。数值结果与液相和气相喷雾半径的实验数据进行了比较。线性不稳定性片雾化(LISA)模型已用于描述压力旋流雾化器喷雾的雾化和破碎过程。使用简单模型建立了孔隙率为0.88的热多孔介质的结构。计算了PM内部燃料滴的喷射,运动和汽化及其对块体边缘的撞击。因此,获得了PM内部温度和燃料浓度的空间分布和时间演化。在数值模拟的基础上,讨论了环境压力和喷雾锥角等工作参数对燃料喷雾和混合气形成特性的影响。计算结果揭示了压力旋流喷雾和热多孔介质之间相互作用的基本方面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号