首页> 外文期刊>Energy Conversion & Management >Kinetic modeling of polycyclic aromatic hydrocarbons formation process for gasoline surrogate fuels
【24h】

Kinetic modeling of polycyclic aromatic hydrocarbons formation process for gasoline surrogate fuels

机译:汽油替代燃料多环芳烃形成过程的动力学模型

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

It is very necessary to develop a comprehensive gasoline surrogate fuel chemical kinetic model that could accurately predict soot emissions and polycyclic aromatic hydrocarbons (PAHs) formation in internal combustion engines. Based on the consideration, this paper presents a toluene reference fuel (TRF) chemical mechanism to predict the PAHs formation process. This mechanism has been validated for ignition delays over a range of initial conditions covering the pressures from 15 to 60 bar, equivalence ratios from 0.5 to 2.0 and temperatures from 750 to 1280 K, especially for gasoline/air and two TRFs/air mixtures under engines conditions. Laminar flame speeds were also validated at low and high pressures. Furthermore, in order to guarantee the prediction accuracy of PAHs, premixed and opposed flow flames were simulated to validate the formation of PAHs and good agreements were obtained. Sensitivity analysis was performed to analyze the contribution of reactions to ignition delays and laminar flame speeds. Rate of production analysis was also carried out to identify the formation and consumption reaction pathways of A1 under different temperatures. The results indicated that the TRF PAHs chemical mechanism could meet the demand of the PAHs simulation in engines. The proposed mechanism, which includes 219 species and 1229 reactions, is available as supporting Information for this article. (C) 2015 Elsevier Ltd. All rights reserved.
机译:建立一个全面的汽油替代燃料化学动力学模型非常重要,该模型可以准确预测内燃机中的烟尘排放和多环芳烃(PAHs)形成。基于此考虑,本文提出了一种甲苯参考燃料(TRF)的化学机理来预测PAHs的形成过程。该机制已经过验证,可在一系列初始条件下进行点火延迟,这些条件涵盖压力从15至60 bar,当量比从0.5至2.0和温度从750至1280 K,特别是对于发动机下的汽油/空气和两种TRF /空气混合物条件。层流火焰速度也在低压和高压下得到验证。此外,为了保证多环芳烃的预测准确性,对预混和对流火焰进行了模拟,以验证多环芳烃的形成并获得了良好的一致性。进行了敏感性分析,以分析反应对点火延迟和层流火焰速度的影响。还进行了生产率分析,以确定在不同温度下A1的形成和消耗反应途径。结果表明,TRF PAHs的化学机理可以满足发动机中PAHs模拟的要求。所提议的机制(包括219个物种和1229个反应)可作为本文的支持信息。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Energy Conversion & Management》 |2015年第8期|249-261|共13页
  • 作者单位

    Tianjin Univ, State Key Lab Engines, Tianjin 300072, Peoples R China;

    Tianjin Univ, State Key Lab Engines, Tianjin 300072, Peoples R China;

    Tianjin Univ, State Key Lab Engines, Tianjin 300072, Peoples R China|Tianjin Univ, Internal Combust Engine Res Inst, Tianjin 300072, Peoples R China;

    Tianjin Univ, State Key Lab Engines, Tianjin 300072, Peoples R China;

    Tianjin Univ, State Key Lab Engines, Tianjin 300072, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Toluene reference fuel; PAHs; Ignition delays; Laminar flame speed;

    机译:甲苯参考燃料;PAHs;点火延迟;层流火焰速度;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号