首页> 外文期刊>Energy Conversion & Management >Modeling and optimization of sunflower oil methanolysis over quicklime bits in a packed bed tubular reactor using the response surface methodology
【24h】

Modeling and optimization of sunflower oil methanolysis over quicklime bits in a packed bed tubular reactor using the response surface methodology

机译:使用响应面法对填充床管式反应器中生石灰片上葵花籽油甲醇分解的建模和优化

获取原文
获取原文并翻译 | 示例
           

摘要

The effect of the residence time (i.e. liquid flow rate through the reactor), methanol-to-oil molar ratio and reaction temperature on the fatty acid methyl esters (FAMEs) content at the output of a continuous packed bed tubular reactor was modeled by the response surface methodology (RSM) combined with the 3(3) full factorial design (FFD) with replication or the Box-Behnken design (BBD) with five center points. The methanolysis of sunflower oil was carried out at the residence time of 1.0, 1.5 and 2.0 h, the methanol-to-oil molar ratios of 6:1, 12:1 and 18:1 and the reaction temperature of 40, 50 and 60 degrees C under the atmospheric pressure. Based on the used experimental designs, the model equations containing only linear and two-factor interaction terms were developed for predicting the FAME content, which were validated through the use of the unseen data. Applying the analysis of variance (ANOVA), all three factors were shown to have a significant influence on the FAME content. Acceptable statistical predictability and accuracy resulted from both designs since the values of the coefficient of determination were close to unity while the values of the mean relative percentage deviation were relatively low (<+/- 10%). In addition, both designs predicted the maximum FAME content of above 99%, which agreed closely with the actual FAME content (98.8%). The same optimal reaction temperature (60 degrees C) and residence time (2.0 h) were determined by both designs while the BBD model suggested a slightly lower methanol-to oil molar ratio (12.2:1) than the 3(3) FFD model (12.8:1). Since the BBD realization involved three times smaller number of experimental runs, thus requiring lower costs, less labor and shorter time than the 33 FFD, it could be recommended for the optimization of biodiesel production processes. (C) 2016 Elsevier Ltd. All rights reserved.
机译:停留时间(即通过反应器的液体流速),甲醇与油的摩尔比和反应温度对连续填充床管式反应器输出处脂肪酸甲酯(FAMEs)含量的影响通过以下方式模拟:响应面方法(RSM)与具有复制功能的3(3)全因子设计(FFD)或具有五个中心点的Box-Behnken设计(BBD)相结合。在停留时间为1.0、1.5和2.0小时,甲醇与油的摩尔比为6:1、12:1和18:1以及反应温度为40、50和60的条件下进行葵花籽油的甲醇分解在大气压下的摄氏温度。基于使用的实验设计,开发了仅包含线性和两因素相互作用项的模型方程式,以预测FAME含量,并通过使用看不见的数据进行了验证。应用方差分析(ANOVA),所有这三个因素均显示对FAME含量有重大影响。两种设计均具有可接受的统计可预测性和准确性,因为测定系数的值接近于1,而平均相对百分比偏差的值则相对较低(<+/- 10%)。此外,两种设计均预测最大FAME含量超过99%,与实际FAME含量(98.8%)非常吻合。两种设计都确定了相同的最佳反应温度(60摄氏度)和停留时间(2.0 h),而BBD模型建议的甲醇与油的摩尔比(12.2:1)比3(3)FFD模型略低( 12.8:1)。由于实现BBD所需的实验运行次数减少了三倍,因此与33 FFD相比,其所需的成本更低,所需的劳动力更少,时间更短,因此建议将其用于生物柴油生产工艺的优化。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号