首页> 外文期刊>Energy Conversion & Management >An improved modeling for low-grade organic Rankine cycle coupled with optimization design of radial-inflow turbine
【24h】

An improved modeling for low-grade organic Rankine cycle coupled with optimization design of radial-inflow turbine

机译:低品位有机朗肯循环的改进模型及径向入流透平的优化设计

获取原文
获取原文并翻译 | 示例
       

摘要

Organic Rankine cycle (ORC) has been proven to be an effective and promising technology to convert low-grade heat energy into power, attracting rapidly growing interest in recent years. As the key component of the ORC system, turbine significantly influences the overall cycle performance and its efficiency also varies with different working fluids as well as in different operating conditions. However, turbine efficiency is generally assumed to be constant in the conventional cycle design. Aiming at this issue, this paper couples the ORC system design with the radial-inflow turbine design to investigate the thermodynamic performance of the ORC system and the aerodynamic characteristics of radial-inflow turbine simultaneously. The constrained genetic algorithm (GA) is used to optimize the radial-inflow turbine with attention to six design parameters, including degree of reaction, velocity ratio, loading coefficient, flow coefficient, ratio of wheel diameter, and rotational speed. The influence of heat source outlet temperature on the performance of the radial-inflow turbine and the ORC system with constant mass flow rate of the heat source and constant heat source inlet temperature is investigated for four kinds of working fluids. The net electrical powers achieved are from few tens kWs to one hundred kWs. The results show that the turbine efficiency decreases with increasing heat source outlet temperature and that the decreasing rate of turbine efficiency becomes faster in the high temperature region. The optimized turbine efficiency varies from 88.06% (using pentane at the outlet temperature of 105 degrees C) to 91.01% (using R245fa at the outlet temperature of 80 degrees C), which appears much higher compared to common values reported in the literature. Furthermore, the cycle efficiency increases monotonously with the growth of the heat source outlet temperature, whereas the net power output has the opposite trend. R123 achieves the maximum cycle efficiency of 12.21% at the heat source outlet temperature of 110 degrees C. Based on the optimized results, the recommended ranges of the key design parameters for ORC radial-inflow turbine are presented as well.
机译:有机朗肯循环(ORC)已被证明是一种有效且有前途的技术,可以将低等级的热能转化为电能,近年来引起了越来越多的关注。作为ORC系统的关键组件,涡轮机会显着影响整体循环性能,其效率也会随不同的工作流体以及不同的运行条件而变化。然而,在常规循环设计中,涡轮效率通常被假定为恒定的。针对这个问题,本文将ORC系统设计与径向流入涡轮机设计相结合,以同时研究ORC系统的热力学性能和径向流入涡轮机的空气动力学特性。约束遗传算法(GA)用于优化径向流入涡轮机,同时注意六个设计参数,包括反应程度,速度比,负载系数,流量系数,轮径比和转速。针对四种工质,研究了热源出口温度对热源质量流量恒定,热源入口温度恒定的径向流入水轮机和ORC系统性能的影响。实现的净电功率从几十千瓦到一百千瓦。结果表明,涡轮机效率随着热源出口温度的升高而降低,并且在高温区域涡轮机效率的降低速率变得更快。优化后的涡轮效率从88.06%(在105°C的出口温度下使用戊烷)到91.01%(在80°C的出口温度下使用R245fa)变化,与文献中报道的常用值相比,该效率要高得多。此外,循环效率随着热源出口温度的升高而单调增加,而净功率输出则呈现相反的趋势。在热源出口温度为110摄氏度时,R123的最大循环效率达到12.21%。基于优化结果,还介绍了ORC径向流入式涡轮机关键设计参数的建议范围。

著录项

  • 来源
    《Energy Conversion & Management》 |2017年第12期|60-70|共11页
  • 作者单位

    Beihang Univ, Sch Energy & Power Engn, Natl Key Lab Sci & Technol Aeroengine Aerothermod, Beijing 100191, Peoples R China;

    Beihang Univ, Sch Energy & Power Engn, Natl Key Lab Sci & Technol Aeroengine Aerothermod, Beijing 100191, Peoples R China;

    Beihang Univ, Sch Energy & Power Engn, Natl Key Lab Sci & Technol Aeroengine Aerothermod, Beijing 100191, Peoples R China;

    Beihang Univ, Sch Energy & Power Engn, Natl Key Lab Sci & Technol Aeroengine Aerothermod, Beijing 100191, Peoples R China;

    Beihang Univ, Sch Energy & Power Engn, Natl Key Lab Sci & Technol Aeroengine Aerothermod, Beijing 100191, Peoples R China;

    Univ Hertfordshire, Sch Engn & Technol, Hatfield AL10 9AB, Herts, England;

    Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Organic Rankine cycle; Radial-inflow turbine; Coupled modeling; Genetic algorithm;

    机译:有机朗肯循环;径向流入涡轮;耦合建模;遗传算法;
  • 入库时间 2022-08-18 00:23:04

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号