首页> 外文期刊>Energy Conversion & Management >Performance of working-fluid mixtures in ORC-CHP systems for different heat-demand segments and heat-recovery temperature levels
【24h】

Performance of working-fluid mixtures in ORC-CHP systems for different heat-demand segments and heat-recovery temperature levels

机译:ORC-CHP系统中工作流体混合物在不同热需求段和热回收温度水平下的性能

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, we investigate the adoption of working-fluid mixtures in ORC systems operating in combined heat and power (CHP) mode, with a power output provided by the expanding working fluid in the ORC turbine and a thermal energy output provided by the cooling water exiting (as a hot-water supply) the ORC condenser. We present a methodology for selecting optimal working-fluids in ORC systems with optimal CHP heat-to-electricity ratio and heat-supply temperature settings to match the seasonal variation in heat demand (temperature and intermittency of the load) of different end-users. A number of representative industrial waste-heat sources are considered by varying the ORC heat-source temperature over the range 150-330 degrees C. It is found that, a higher hot-water outlet temperature increases the exergy of the heat-sink stream but decreases the power output of the expander. Conversely, a low outlet temperature (similar to 30 degrees C) allows for a high power-output, but a low cooling-stream exergy and hence a low potential to heat buildings or to cover other industrial thermal-energy demands. The results demonstrate that the optimal ORC shaft-power outputs vary considerably, from 9 MW up to 26 MW, while up to 10 MW of heating exergy is provided, with fuel savings in excess of 10%. It also emerges that single component working fluids such as n-pentane appear to be optimal for fulfilling low-temperature heat demands, while working-fluid mixtures become optimal at higher heat-demand temperatures. In particular, the working-fluid mixture of 70% n-octane +30% n-pentane results in an ORC-CHP system with the highest ORC exergy efficiency of 63% when utilizing 330 degrees C waste heat and delivering 90 degrees C hot water. The results of this research indicate that, when optimizing the global performance of ORC-CHP systems fed by industrial waste-heat sources, the temperature and load pattern of the cogenerated heat demand are crucial factors affecting the selection of the working fluid. (c) 2017 The Author(s). Published by Elsevier Ltd.
机译:在本文中,我们研究了工作流体混合物在以热电联产(CHP)模式运行的ORC系统中的采用,其功率输出由ORC涡轮中膨胀的工作流体提供,而热能输出则由冷却提供离开ORC冷凝器的水(作为热水供应)。我们提出了一种在ORC系统中选择最佳工作流体的方法,该系统具有最佳的CHP热电比和供热温度设置,以匹配不同最终用户的热量需求(温度和负载间歇性)的季节性变化。通过在150-330摄氏度范围内改变ORC热源温度来考虑许多代表性的工业废热源。发现较高的热水出口温度会增加散热器流的火用度,但降低扩展器的功率输出。相反,较低的出口温度(约30摄氏度)可实现高功率输出,但冷却流能值低,因此加热建筑物或满足其他工业热能需求的可能性低。结果表明,最佳ORC轴功率输出差异很大,从9 MW到26 MW,同时提供了多达10 MW的火用热能,节省的燃料超过10%。还发现单组分工作流体(例如正戊烷)似乎最适合满足低温热需求,而工作流体混合物在更高的热需求温度下变得最优。特别是,当使用330摄氏度的废热并输送90摄氏度的热水时,由70%的正辛烷+ 30%的正戊烷组成的工作流体混合物将导致ORC-CHP系统的最高ORC效率为63% 。研究结果表明,当优化由工业废热源提供的ORC-CHP系统的整体性能时,热能需求的温度和负载模式是影响工作流体选择的关键因素。 (c)2017作者。由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号