首页> 外文期刊>Energy Conversion & Management >Thermodynamic analysis of the effect of channel geometry on heat transfer in double-layered microchannel heat sinks
【24h】

Thermodynamic analysis of the effect of channel geometry on heat transfer in double-layered microchannel heat sinks

机译:通道几何形状对双层微通道散热器中传热影响的热力学分析

获取原文
获取原文并翻译 | 示例
           

摘要

Novel double-layered microchannel heat sinks with different channel geometries in each layer (Structure 2 for short) are designed to reduce pressure drop and maintain good heat transfer performance, which is compared with structure 1 (the same of complex channel geometry in each layer). The effect of parallel flow, counter flow and different channel geometries on heat transfer is studied numerically. Moreover, the essence of heat transfer enhancement is analyzed by thermodynamics. On one hand, the synergy relationship between flow field and temperature field is analyzed by field synergy principle. On the other hand, the irreversibility of heat transfer is studied by transport efficiency of thermal energy. The results show that the temperature distribution of counter flow is more uniform than that of parallel flow. Furthermore, heat dissipation and pressure drop of structure 2 are both better and lower than that of structure 1. Form the viewpoint of temperature distribution, structure C2 (i.e., counter flow with rectangular channels in upper layer and complex channels in bottom layer) presents the most uniform bottom temperature for microelectronic cooling. However, comprehensive heat transfer performance of structure P2 (i.e., parallel flow with rectangular channels in upper layer and complex channels in bottom layer) shows the best from the viewpoint of thermodynamics. The reasons can be ascribed to the channel geometry of structure P2 can obviously improve the synergy relationship between temperature and velocity fields, reduce fluid temperature gradient and heat transfer irreversibility. (C) 2017 Elsevier Ltd. All rights reserved.
机译:与结构1(每层复杂的通道几何结构相同)相比,新颖的双层微通道散热器在每层中具有不同的通道几何形状(简称结构2),旨在减少压降并保持良好的传热性能。 。数值研究了平行流,逆流和不同通道的几何形状对传热的影响。此外,通过热力学分析了强化传热的本质。一方面,利用场协同原理分析了流场与温度场之间的协同关系。另一方面,通过热能的传输效率来研究热的不可逆性。结果表明,逆流的温度分布比平行流的温度分布更均匀。此外,结构2的散热和压降比结构1更好,也更低。从温度分布的角度来看,结构C2(即,在上层具有矩形通道而在下层具有复杂通道的逆流)呈现出微电子冷却的最均匀底部温度。然而,从热力学的观点来看,结构P2的综合传热性能(即,在上层具有矩形通道而在下层具有复杂通道的平行流动)显示出最佳。原因可以归结为结构P2的通道几何形状可以明显改善温度场与速度场之间的协同关系,降低流体温度梯度和传热不可逆性。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号