...
首页> 外文期刊>Energy Conversion & Management >Thermodynamic analysis on a modified Kalina cycle with parallel cogeneration of power and refrigeration
【24h】

Thermodynamic analysis on a modified Kalina cycle with parallel cogeneration of power and refrigeration

机译:动力和制冷并行热电联产的改进Kalina循环的热力学分析

获取原文
获取原文并翻译 | 示例
           

摘要

A modified Kalina cycle with parallel cogeneration of power and refrigeration abbreviated as PPR-KC was proposed and investigated. The cycle cogenerates refrigeration by further reclaiming heat resource from the boiler. A parallel branch of work solution is split at the outlet of the mid-p-absorber, and It undergoes pumping, generation, rectification and condensation before evaporation for refrigeration. Then the vapor from the evaporator goes to a mixer at the low-p-absorber inlet via a subcooler, while the dilute solution from the generator heats the basic solution in the second recuperator before going to the mixer via a throttle valve. The split fraction which determines the relative percentage of work solution flow rate for power generation or refrigeration can be altered arbitrary at user's demand. The parameter optimization was conducted and the optimum work concentration is 0.5 and the optimum basic concentration shall be adjusted with different split fraction. Under temperatures of heat resource/cooling water are 400 degrees C/30 degrees C and minimum pinch temperature differences in heat exchangers with/without flue gas are 20/5 K respectively, the comprehensive power recovery efficiency of the PPR-KC reaches 27.2%, which is 9.85% and 20.24% respectively higher than those of the cogeneration cycle proposed by Liu et al. and the Kalina cycle.
机译:提出并研究了功率与制冷并行热电联产的改进Kalina循环。该循环通过进一步回收锅炉的热资源来产生制冷。平行的工作溶液分支在中位p吸收器的出口处分开,经过抽水,产生,精馏和冷凝,然后蒸发以进行制冷。然后,来自蒸发器的蒸气通过过冷器进入低P吸收器入口的混合器,而发生器的稀溶液在第二节流器中加热基本溶液,然后再通过节流阀进入混合器。可以根据用户的要求任意更改确定发电或制冷工作溶液流量的相对百分比的比例。进行了参数优化,最佳工作浓度为0.5,并且最佳碱性浓度应使用不同的分馏比进行调整。在热源/冷却水温度为400摄氏度/ 30摄氏度且有/无烟道气的热交换器中的最小夹点温差分别为20/5 K时,PPR-KC的综合功率回收效率达到27.2%,分别比Liu等人提出的热电联产周期高9.85%和20.24%。和Kalina周期。

著录项

  • 来源
    《Energy Conversion & Management》 |2018年第5期|1-12|共12页
  • 作者单位

    Southeast Univ, Sch Energy & Environm, Jiangsu Prov Key Lab Solar Energy Sci & Technol, Key Lab Energy Thermal Convers & Control,Minist E, Nanjing 210096, Jiangsu, Peoples R China;

    Southeast Univ, Sch Energy & Environm, Jiangsu Prov Key Lab Solar Energy Sci & Technol, Key Lab Energy Thermal Convers & Control,Minist E, Nanjing 210096, Jiangsu, Peoples R China;

    Southeast Univ, Sch Energy & Environm, Jiangsu Prov Key Lab Solar Energy Sci & Technol, Key Lab Energy Thermal Convers & Control,Minist E, Nanjing 210096, Jiangsu, Peoples R China;

    Southeast Univ, Sch Energy & Environm, Jiangsu Prov Key Lab Solar Energy Sci & Technol, Key Lab Energy Thermal Convers & Control,Minist E, Nanjing 210096, Jiangsu, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Ulna cycle; Cogeneration of power and refrigeration; Ammonia-water mixture; Comprehensive power recovery efficiency; Parameter optimization;

    机译:乌尔纳循环;电力与制冷的热电联产;氨水混合物;综合电力回收效率;参数优化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号