...
首页> 外文期刊>Energy Conversion & Management >An efficient multiphase bioprocess for enhancing the renewable energy production from almond shells
【24h】

An efficient multiphase bioprocess for enhancing the renewable energy production from almond shells

机译:一种有效的多相生物工艺,可提高杏仁壳的可再生能源生产

获取原文
获取原文并翻译 | 示例
           

摘要

The present study is based on "waste to energy" concept, wherein the potential of almond crop residues viz., almond shells were investigated for biofuel production via different bioprocesses. Three routes, namely A1 representing hythane production through two-stage anaerobic digestion (TSAD), A2 representing ethanolic fermentation and A3 representing coupled ethanol and hythane production were evaluated for maximizing energy recovery. Results showed that in route A1, increased H-2/(H-2 + CH4) ratio (0.53) resulted in inappropriate hythane composition which was attributed to higher hydrogen yield of 236.6 L/kg chemical oxygen demand removed (CODr) and lower methane production (203.9 L/kg CODr) in the respective route. In route A2, sole ethanol production led to much lower carbon conversion efficiency (25.7%) and energy yield (6173.1 kJ/kg CODr) that questions the feasibility and efficiency of this process. However, in route A3, coupled ethanol and hythane production led to increased substrate degradation (91.3%) and higher carbon conversion efficiency (75.1%) resulting in enhanced energy recovery (22156.6 kJ/kg CODr) as compared to A1 route (13573.6 kJ/kg CODr). The stable H-2/(H-2 + CH4) ratio of 0.29 obtained in route A3 makes this pathway most suitable for efficient co-production of both biofuels. Further, linking of biochemical conversion process with thermochemical process viz., pyrolysis to produce biochar from almond shell residue, could be seen as an effective strategy for waste management and for enhancing the economic viability of the process.
机译:本研究基于“废物转化为能源”的概念,其中通过不同的生物过程研究了杏仁作物残渣的潜力,即杏仁壳用于生产生物燃料的潜力。为了最大限度地提高能量回收率,对三种途径进行了评估,分别是A1代表通过两阶段厌氧消化(TSAD)的乙烷生产,A2代表乙醇发酵和A3代表乙醇和乙烷的联合生产。结果表明,在路线A1中,增加的H-2 /(H-2 + CH4)比(0.53)导致了不适当的乙烷组成,这归因于氢气产量提高了236.6 L / kg的化学需氧量(CODr)和较低的甲烷各自路线的生产量(203.9 L / kg CODr)。在路线A2中,仅乙醇生产会导致碳转化效率(25.7%)和能源产量(6173.1 kJ / kg CODr)大大降低,这对该工艺的可行性和效率提出了质疑。然而,与A1路线(13573.6 kJ / kg)相比,在A3路线中,乙醇和乙烷的联合生产导致底物降解增加(91.3%)和更高的碳转化效率(75.1%),从而提高了能量回收(22156.6 kJ / kg CODr)。公斤CODr)。在路线A3中获得的H-2 /(H-2 + CH4)稳定比率为0.29,使该路线最适合两种生物燃料的有效联产。此外,将生化转化过程与热化学过程联系起来,即热解从杏仁壳残余物中生产生物炭,可以被视为废物管理和提高该过程的经济可行性的有效策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号