...
首页> 外文期刊>Energy Conversion & Management >Combining the lumped capacitance method and the simplified distributed activation energy model to describe the pyrolysis of thermally small biomass particles
【24h】

Combining the lumped capacitance method and the simplified distributed activation energy model to describe the pyrolysis of thermally small biomass particles

机译:结合集总电容法和简化的分布式活化能模型来描述热小的生物质颗粒的热解

获取原文
获取原文并翻译 | 示例

摘要

The pyrolysis process of thermally small biomass particles was modeled combining the Lumped Capacitance Method (LCM) to describe the transient heat transfer and the Distributed Activation Energy Model (DAEM) to account for the chemical kinetics. The inverse exponential temperature increase predicted by the LCM was considered in the mathematical derivation of the DAEM, resulting in an Arrhenius equation valid to describe the evolution of the pyrolysis process under inverse exponential temperature profiles. The Arrhenius equation on which the simple LCM-DAEM model proposed is based was derived for a wide range of pyrolysis reactor temperatures, considering the chemical kinetics data of four lignocellulosic biomass species: pine wood, olive kernel, thistle flower, and corncob. The LCM-DAEM model proposed was validated by comparison to the experimental results of the pyrolysis conversion evolution of biomass samples subjected to various inverse exponential temperature increases in a TGA. To extend the validation, additional biomass samples of Chlorella Vulgaris and sewage sludge were selected due to the different composition of microalgae and sludge compared to lignocellulosic biomass. The deviations obtained between the experimental measurements in TGA and the LCM-DAEM predictions for the evolution of the pyrolysis conversion, regarding the root mean square error of temperature, are below 5 degrees C in all cases. Therefore, the simple LCM-DAEM model proposed can describe-accurately the pyrolysis-process of a thermally small biomass particle, accounting for both the transient heat transfer and the chemical kinetics by solving a simple Arrhenius equation.
机译:结合集总电容法(LCM)描述瞬态传热和分布活化能模型(DAEM)来模拟化学小生物质颗粒的热解过程。在DAEM的数学推导中考虑了由LCM预测的反指数温度升高,从而形成了一个Arrhenius方程,该方程可有效描述反指数温度曲线下热解过程的演变。考虑到四种木质纤维素生物质的化学动力学数据:松木,橄榄核,蓟花和玉米芯,针对广泛的热解反应器温度推导了所提出的简单LCM-DAEM模型所基于的Arrhenius方程。通过与TGA中经受各种反指数温度升高的生物质样品的热解转化演变的实验结果进行比较,验证了所提出的LCM-DAEM模型。为了扩展验证,由于微藻和污泥的成分与木质纤维素生物质相比有所不同,因此选择了小球藻和污水污泥的其他生物质样品。在所有情况下,关于温度的均方根误差,TGA中的实验测量值与热解转化率演变的LCM-DAEM预测值之间的偏差均低于5摄氏度。因此,所提出的简单LCM-DAEM模型可以准确地描述热小的生物质颗粒的热解过程,并通过求解简单的Arrhenius方程来考虑瞬态传热和化学动力学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号