...
首页> 外文期刊>Energy Conversion & Management >Generation and selection of Pareto-optimal solution for the sorption enhanced steam biomass gasification system with solid oxide fuel cell
【24h】

Generation and selection of Pareto-optimal solution for the sorption enhanced steam biomass gasification system with solid oxide fuel cell

机译:具有固体氧化物燃料电池的吸附增强型蒸汽生物质气化系统的帕累托最优溶液的产生和选择

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The biomass gasification coupled with a solid oxide fuel cell (SOFC) system is one of the most efficient and environmentally friendly technologies for combined heat and power generations. For the development and improvement of the integrated process systems, the optimization problem has more than one conflicting objective functions to be optimized (i.e., thermodynamic performance, environmental impacts, annual profit, capital and operating costs) simultaneously. Multi-objective optimization (MOO) methods are used to find a set of optimal (or non-dominated) solutions. In this work, MOO of a sorption enhanced steam biomass gasification (SEG) integrated with an SOFC and gas turbine (GT) system, for combined heat and power production from Eucalyptus wood chips as biomass feedstock, is investigated. Firstly, the model of this integrated plant is developed in Aspen Plus that can be divided into five parts: (1) SEG, (2) hot gas cleaning and steam reforming, (3) SOFC, (4) catalytic burning, GT and CO2 compression, and (5) Portland cement production. As the annual profit demonstrates the economic viability of the plant and annualized capital cost (ACC) indicates availability of investments, the MOO of the integrated plant is performed to obtain Pareto-optimal solutions based on the minimization of ACC and maximization of annual profit with five important decision variables. After that, ten selection methods are used to recommend practical solutions for implementing in the integrated plant. In order to explore the effect of decision variables uncertainty on obtained Pareto-optimal solutions, random variations in decision variables are used to quantify deviations in objective functions. The Pareto-optimal solutions are ranked based on the normalized variations for decision variables uncertainty. At the end of this study, robust MOO of the integrated plant is performed, with respect to uncertainties in the market and operating parameters.
机译:结合固体氧化物燃料电池(SOFC)系统的生物质气化是用于热电联产的最有效,最环保的技术之一。对于集成过程系统的开发和改进,优化问题具有多个要优化的矛盾目标功能(即热力学性能,环境影响,年利润,资金和运营成本)。多目标优化(MOO)方法用于查找一组最佳(或非主导)解决方案。在这项工作中,研究了与SOFC和燃气轮机(GT)系统集成的吸附增强型蒸汽生物质气化(SEG)的MOO,用于从桉木片作为生物质原料进行热电联产。首先,该综合工厂的模型是在Aspen Plus中开发的,可分为五个部分:(1)SEG,(2)热气清洁和蒸汽重整,(3)SOFC,(4)催化燃烧,GT和CO2压缩;(5)硅酸盐水泥的生产。由于年度利润表明了工厂的经济可行性,并且年度资本成本(ACC)表示有投资,因此,基于最小化ACC和年度利润最大化(五项),对集成工厂执行MOO以获得帕累托最优解决方案重要的决策变量。之后,使用十种选择方法来推荐在集成工厂中实施的实用解决方案。为了探索决策变量不确定性对获得的帕累托最优解的影响,决策变量中的随机变化用于量化目标函数中的偏差。基于决策变量不确定性的归一化变异对Pareto最优解进行排序。在本研究的最后,针对市场和操作参数的不确定性,对集成工厂进行了强大的MOO。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号