首页> 外文期刊>Energy Conversion & Management >CFD analysis of dynamic stall on vertical axis wind turbines using Scale-Adaptive Simulation (SAS): Comparison against URANS and hybrid RANS/ LES
【24h】

CFD analysis of dynamic stall on vertical axis wind turbines using Scale-Adaptive Simulation (SAS): Comparison against URANS and hybrid RANS/ LES

机译:基于比例自适应仿真(SAS)的垂直轴风力发电机动态失速的CFD分析:与URANS和混合RANS / LES的比较

获取原文
获取原文并翻译 | 示例
       

摘要

The Scale-Adaptive Simulation (SAS) approach has emerged as an improved unsteady Reynolds-Averaged Navier-Stokes (URANS) formulation to bridge the gap between the less accurate commonly used URANS and the computationally expensive hybrid RANS/LES for highly separated unsteady flows, e.g. dynamic stall. However, while the SAS has been successfully used at several occasions, it has not yet been tested for the complex case of dynamic stall. Therefore, the present study analyzes the SAS predictions of dynamic stall on a vertical axis wind turbine at a chord Reynolds number of 5 x 10(4) and a reduced frequency of 0.125. The analysis is based on comparison of the SAS predictions of the blade aerodynamics and the turbine power performance against the corresponding URANS and hybrid RANS/LES predictions. The results show that the SAS predictions are closer to hybrid RANS/LES than URANS with respect to: (i) the instant of the bursting of the laminar separation bubble (LSB), the leading-edge suction collapse, the formation of the dynamic stall vortex (DSV) and the trailing-edge vortex (TEV) and the shedding of the TEV; (ii) the size and strength of the TEV; (iii) the DSV-TEV interaction; (iv) the drag prediction during the downstroke. On the other hand, both URANS and SAS fail to corroborate with hybrid RANS/LES with respect to: (i) the instant of the formation of the LSB and the shedding of the DSV (the stall angle); (ii) the drag jump at the stall angle; (iii) the lift values during the downstroke; and (iv) the chordwise extent of the LSB.
机译:比例自适应仿真(SAS)方法已经出现,它是一种改进的非稳态雷诺平均Navier-Stokes(URANS)公式,可以弥补精度较低的常用URANS与计算量大的混合RANS / LES之间的差距,以解决高度分离的非稳态流,例如动态失速。但是,虽然SAS已在多种场合成功使用,但尚未针对复杂的动态失速情况进行过测试。因此,本研究分析了弦轴雷诺数为5 x 10(4)且降低的频率为0.125时,垂直轴风力发电机的动态失速的SAS预测。该分析基于对叶片空气动力学和涡轮功率性能的SAS预测与相应的URANS和混合RANS / LES预测的比较。结果表明,在以下方面,SAS预测比URANS更接近混合RANS / LES:(i)层流分离气泡(LSB)破裂的瞬间,前沿吸力崩溃,动态失速的形成涡旋(DSV)和后缘涡旋(TEV)以及TEV的脱落; (ii)TEV的大小和强度; (iii)DSV-TEV互动; (iv)下行程期间的阻力预测。另一方面,在以下方面,URANS和SAS都不能与混合RANS / LES相互证实:(i)LSB形成的瞬间和DSV的脱落(失速角); (ii)失速角处的阻力跳跃; (iii)下行程期间的升力值; (iv)LSB的弦向范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号