首页> 外文期刊>Energy Conversion & Management >Thermochemical analysis and experimental investigation of a recuperative waste heat recovery system for the tri-reforming of light oil
【24h】

Thermochemical analysis and experimental investigation of a recuperative waste heat recovery system for the tri-reforming of light oil

机译:轻质油三重整换热废热回收系统的热化学分析和实验研究

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents a thermochemical and experimental investigation into the use of oxy-fuel exhaust gases for the tri-reforming of light oil. The thermochemical recuperation of light oil makes it possible for the furnace to burn hydrogen-rich syngas, and thereby significantly improve furnace efficiency. This study investigates three process parameters: the exhaust gas recirculation rate, the syngas temperature, and the exhaust gas temperature. (1) The more exhaust gas that is recirculated, the less oxygen is required for complete conversion into syngas, and the higher the heating value of the produced syngas. A maximum increase in the heating value of 31.6% (compared to the primary fuel) is possible if pure bi-reforming is performed. (2) The chemical equilibrium calculations showed that the syngas temperature has a strong effect on the composition of the syngas; a syngas temperature of 1265 degrees C is necessary to achieve a conversion rate of 99.9%. The thermodynamic analysis was performed using the Gibbs free energy minimization method. In order to prevent carbon formation, a slight oxygen excess of 1% must be present. In this case, a syngas temperature of 970 degrees C is sufficient for the stationary tri-reforming of light oil. (3) The energy required for reforming the primary fuel increases with increased syngas temperature, while the energy contained in the hot exhaust gas stream increases with increased exhaust gas temperature. In order to achieve a syngas temperature of at least 970 degrees C, both the required exhaust gas recirculation rate and the amount of oxygen for reforming and combustion are directly dependent on the temperature of the exhaust gas. An exhaust gas temperature of 1000 degrees C requires an exhaust gas recirculation rate of 16.2%, while a recirculation rate of 26.9% is necessary at an exhaust gas temperature of 1600 degrees C. In the latter case, it is possible to increase the efficiency of the oxy-fuel furnace by 22.8%.
机译:本文介绍了使用氧燃料废气对轻质油进行三重整的热化学和实验研究。轻油的热化学回收可使炉子燃烧富氢合成气,从而显着提高炉子效率。本研究调查了三个工艺参数:废气再循环率,合成气温度和废气温度。 (1)再循环的废气越多,将氧气完全转化为合成气所需的氧气就越少,所产生的合成气的热值就越高。如果执行纯双向重整,则发热量最大增加31.6%(与主要燃料相比)。 (2)化学平衡计算表明合成气温度对合成气的组成有很大影响;为了达到99.9%的转化率,需要1265摄氏度的合成气温度。使用吉布斯自由能最小化方法进行热力学分析。为了防止形成碳,必须存在略微超过1%的氧气。在这种情况下,970℃的合成气温度足以对轻油进行静态三重整。 (3)重整一次燃料所需的能量随合成气温度的升高而增加,而热废气流中所含的能量随废气温度的升高而升高。为了达到至少970℃的合成气温度,所需的废气再循环率和用于重整和燃烧的氧气量都直接取决于废气的温度。排气温度为1000摄氏度需要排气再循环率为16.2%,而排气温度为1600摄氏度则需要再循环率为26.9%。在后一种情况下,可以提高排气效率。氧燃料炉增长了22.8%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号