...
首页> 外文期刊>Energy Conversion & Management >The effects of the ideal gas model with constant heat capacities on fuel efficiency optimization of the open-cycle gas turbine
【24h】

The effects of the ideal gas model with constant heat capacities on fuel efficiency optimization of the open-cycle gas turbine

机译:具有恒定热容量的理想气体模型对开式循环燃气轮机燃油效率优化的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The optimization of a gas power cycle can be thermodynamical, techno-economical, thermo-economical and so on but, in general, the thermodynamic modeling is mandatory to solve the problem. Once the thermodynamic model is established the properties of the gases present in the cycle must be evaluated and the simplifications made for this evaluation could lead to inaccurate and even misleading results. In this paper the effect of using the perfect gas model in the optimization of the Specific Fuel Consumption (SFC) of the open simple cycle gas turbine has been analyzed. The results are obtained for compressor and turbine inlet temperatures (CIT and TIT) between 260 K-320 K and 1200 K-1800 K respectively. The optimization yields the minimum of SFC but also the corresponding values of compressor pressure ratio and specific power. In this work the optimization is first performed with a highly accurate ideal gas modeling approach in order to generate benchmark results. Afterward, the optimization is performed with a perfect gas modeling approach using four different methods (named A, B, C and D) to evaluate the constant value needed of the isobaric heat capacity. It is found that the optimization results can depend strongly on the method or rule used to evaluate the heat capacity. As an example, the uncertainty in the optimal value of SFC is between 8.5% and 14.9% with method C and below 3.2% with method D. In general, huge deviations in the compressor pressure ratio are found. Values higher than 160/0 for CIT below 300 K regardless the TIT value are found with methods A, B and C. In the worst case this deviation can be even higher than 100%. In general, this uncertainty gives rise to higher deviations in the specific power than in optimal SFC values. For example, with the method B and a TIT of 1800 K the ranges of the relative error are 56%-112%, 4.9%-6.2% and 17.8%-26.7% in the compressor pressure ratio, optimal SFC and specific power respectively. With respect to the CIT and TIT dependence the deviations in the compressor pressure ratio and specific power increase for high TIT and low CIT.This work is an extension of a previous paper publish by the author where the detailed development of the modeling approaches used in this work can be consulted.
机译:燃气动力循环的优化可以是热力学的,技术经济的,热经济的等,但是总的来说,热力学建模是解决该问题所必须的。一旦建立了热力学模型,就必须对循环中存在的气体的性质进行评估,并且简化评估过程可能会导致结果不准确甚至产生误导。在本文中,分析了在开放式简单循环燃气轮机的最佳燃料消耗(SFC)优化中使用完美气体模型的效果。对于分别在260 K-320 K和1200 K-1800 K之间的压缩机和涡轮进口温度(CIT和TIT)获得的结果。该优化产生最小的SFC,但也产生压缩机压力比和比功率的相应值。在这项工作中,首先使用高度精确的理想气体建模方法进行优化,以生成基准结果。然后,使用四种不同的方法(命名为A,B,C和D)以一种完美的气体建模方法进行优化,以评估等压热容所需的恒定值。发现优化结果可以极大地取决于用于评估热容量的方法或规则。例如,方法C的SFC最佳值的不确定性在8.5%至14.9%之间,而方法D的不确定性在3.2%以下。通常,发现压缩机压力比存在巨大偏差。对于低于300 K的CIT,无论使用哪种方法A,B和C都可以找到高于160/0的值。在最坏的情况下,该偏差甚至可能超过100%。通常,这种不确定性导致比功率的最佳偏差要大于最佳SFC值。例如,使用方法B和1800 K的TIT,压缩机压力比,最佳SFC和比功率的相对误差范围分别为56%-112%,4.9%-6.2%和17.8%-26.7%。关于CIT和TIT的依赖性,高TIT和低CIT时压缩机压力比的偏差和比功率增加。这项工作是作者先前发表论文的扩展,其中详细介绍了本文使用的建模方法可以咨询工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号