...
首页> 外文期刊>Energy Conversion & Management >An innovative integrated system concept between oxy-fuel thermo-photovoltaic device and a Brayton-Rankine combined cycle and its preliminary thermodynamic analysis
【24h】

An innovative integrated system concept between oxy-fuel thermo-photovoltaic device and a Brayton-Rankine combined cycle and its preliminary thermodynamic analysis

机译:氧燃料热光伏装置与Brayton-Rankine联合循环之间的创新集成系统概念及其初步热力学分析

获取原文
获取原文并翻译 | 示例

摘要

This study summarizes the guidelines for the quality-splitting utilization of the radiation and thermal energy after a brief review of the thermo-photovoltaic (TPV) technology and the power cycles. Based on this, an innovative concept of a system that integrates TPV technology and the Brayton-Rankine combined cycle (TBRC) is first proposed. The basic structure of the new system was modeled and a preliminary thermodynamic analysis was performed. The effects of the working conditions including the combustion conditions of different combustion atmospheres, the oxygen concentrations and fuels, and the cycle conditions of different pressures and working fluids on the TBRC system were investigated. It was found that the optimal pressure of the Brayton cycle in the system increased with the combustion oxygen concentration. The system output power was proportional to the combustion oxygen concentration. The system efficiency was similar under 21% O-2/N-2 conditions and 30% O-2/CO2 conditions. The system efficiency was slightly higher for fuel oil than for methane. After considering the efficiency and environmental impacts, n-pentane was selected as the preferred organic Rankine cycle working fluid. Finally, we discuss the application and development prospects of the new system. It is determined that the oxy-fuel TBRC system with flue gas recycle and the integration between the cascade TPV technology and complex power cycles are future research directions.
机译:在简要回顾热光电(TPV)技术和电源循环后,本研究总结了辐射和热能的质量分解利用指南。基于此,首先提出了一种将TPV技术与Brayton-Rankine联合循环(TBRC)相集成的系统的创新概念。对新系统的基本结构进行了建模,并进行了初步的热力学分析。研究了工作条件对TBRC系统的影响,这些条件包括不同燃烧气氛的燃烧条件,氧气浓度和燃料,不同压力和工作流体的循环条件。发现系统中布雷顿循环的最佳压力随着燃烧氧浓度的增加而增加。系统输出功率与燃烧氧气浓度成正比。在21%O-2 / N-2条件和30%O-2 / CO2条件下,系统效率相似。燃油的系统效率略高于甲烷。考虑到效率和环境影响后,选择正戊烷作为首选的有机兰金循环有机工质。最后,我们讨论了新系统的应用和发展前景。已确定具有烟气再循环的含氧TBRC系统以及级联TPV技术与复杂功率循环之间的集成是未来的研究方向。

著录项

  • 来源
    《Energy Conversion & Management 》 |2019年第1期| 1139-1152| 共14页
  • 作者单位

    Zhejiang Univ, Coll Energy Engn, Hangzhou 310027, Zhejiang, Peoples R China|Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA;

    Zhejiang Univ, Coll Energy Engn, Hangzhou 310027, Zhejiang, Peoples R China|Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Zhejiang, Peoples R China;

    Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Zhejiang, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Thermo-photovoltaic; Quality-splitting conversion; Oxy-fuel combustion; Brayton cycle; Rankine cycle;

    机译:热光电;质量分解转换;有氧燃料燃烧;布雷顿循环;朗肯循环;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号