...
首页> 外文期刊>IEEE Transactions on Energy Conversion >A Compact Electrical Model for Microscale Fuel Cells Capable of Predicting Runtime and $I$–$V$ Polarization Performance
【24h】

A Compact Electrical Model for Microscale Fuel Cells Capable of Predicting Runtime and $I$–$V$ Polarization Performance

机译:能够预测运行时间和$ I $ – $ V $极化性能的微型燃料电池紧凑型电气模型

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The growing popularity and success of fuel cells (FCs) in aerospace, stationary power, and transportation applications is driving and challenging researchers to complement and in some cases altogether replace the batteries of portable systems in the hopes of increasing functional density, extending runtime, and decreasing size. Direct-methanol fuel cell (DMFC) batteries have now been built and conformed to low-cost technologies and chip-scale dimensions. Conventional FC models, however, fail to accurately capture the electrical nuances and runtime expectancies of these microscale devices, yet predicting that these electrical characteristics are even more critical when designing portable low-power electronics. A Cadence-compatible model of a DMFC battery is therefore developed to capture all pertinent dynamic and steady-state electrical performance parameters, including capacity and its dependence to current and temperature, open-circuit voltage, methanol-crossover current, polarization curve and its dependence to concentration, internal resistance, and time-dependent response under various loading conditions—the model can also be extended to other micro- and macroscale FC technologies. The simulation results of the proposed electrical model are validated and compared against the experimental performance of several DMFC prototypes, resulting in a runtime error of less than 10.8% and a voltage error under various current loads of less than 80 mV for up to 95% of its operational life. The root cause of the remaining errors and relevant temperature effects in the proposed model are also discussed.
机译:燃料电池(FCs)在航空航天,固定动力和运输应用中的日益普及和成功,正驱动并挑战研究人员对便携式系统的电池进行补充,并在某些情况下完全替代便携式电池,以期提高功能密度,延长运行时间并尺寸减小。现在已经制造了直接甲醇燃料电池(DMFC)电池,并符合低成本技术和芯片级尺寸。然而,常规的FC模型无法准确地捕获这些微型设备的电气差异和运行时间预期,但预测在设计便携式低功耗电子产品时,这些电气特性甚至更为关键。因此,开发了DMFC电池的Cadence兼容模型来捕获所有相关的动态和稳态电性能参数,包括容量及其对电流和温度的依赖性,开路电压,甲醇穿越电流,极化曲线及其依赖性。在各种负载条件下的浓度,内部电阻和随时间变化的响应—该模型还可以扩展到其他微观和宏观FC技术。验证了所提出电气模型的仿真结果,并将其与多个DMFC原型的实验性能进行了比较,从而导致运行时间误差小于10.8%,并且在各种电流负载下,对于高达95%的电流,电压误差小于80 mV。它的使用寿命。还讨论了所提出模型中剩余误差的根本原因和相关的温度影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号