首页> 外文期刊>Energy and Buildings >Modelling the heat dynamics of a monitored Test Reference Environment for Building Integrated Photovoltaic systems using stochastic differential equations
【24h】

Modelling the heat dynamics of a monitored Test Reference Environment for Building Integrated Photovoltaic systems using stochastic differential equations

机译:使用随机微分方程对建筑集成光伏系统的受监控测试参考环境的热力学建模

获取原文
获取原文并翻译 | 示例
       

摘要

This paper deals with grey-box modelling of the energy transfer of a double skin Building Integrated Photovoltaic (BIPV) system. Grey-box models are based on a combination of prior physical knowledge and statistics, which enable identification of the unknown parameters in the system and accurate prediction of the most influential variables. The experimental data originates from tests carried out with an air-based BIPV system installed in a Test Reference Environment. BIPV systems represent an interesting application for achieving the requirements of the EU EPBD Directive. Indeed, these systems could reduce the ventilation thermal losses of the building by pre-heating the fresh air. Furthermore, by decreasing PV module temperature, the ventilation air heat extraction can simultaneously increase electrical and thermal energy production of the building. A correct prediction of the PV module temperature and heat transfer coefficients is fundamental in order to improve the thermo-electrical production. The considered grey-box models are composed of a set of continuous time stochastic differential equations, holding the physical description of the system, combined with a set of discrete time measurement equations, which represent the data driven part. In the present work, both one-state and two-state non-linear grey-box models are considered. In order to validate the results, the residuals are analysed for white-noise properties.
机译:本文研究了双层蒙皮建筑集成光伏(BIPV)系统的能量传递的灰箱模型。灰盒模型基于先验物理知识和统计数据的组合,可以识别系统中的未知参数并准确预测最有影响力的变量。实验数据来自使用安装在“测试参考环境”中的基于空气的BIPV系统进行的测试。 BIPV系统是实现EU EPBD指令要求的有趣应用。实际上,这些系统可以通过预热新鲜空气来减少建筑物的通风热损失。此外,通过降低光伏组件的温度,通风空气的热量提取可以同时增加建筑物的电能和热能产量。为了提高热电产量,正确预测PV模块的温度和传热系数至关重要。所考虑的灰箱模型由一组保持系统物理描述的连续时间随机微分方程,以及一组代表数据驱动部分的离散时间测量方程组成。在目前的工作中,同时考虑了一种状态和两种状态的非线性灰盒模型。为了验证结果,分析了残差的白噪声特性。

著录项

  • 来源
    《Energy and Buildings》 |2012年第7期|p.273-281|共9页
  • 作者单位

    Applied Physics Section of the Environment Science Department, University of Lleida, c/Jaume 1169,25001 Lleida, Spain;

    IMM, Technical University of Denmark, Richard Pedersen Plads, Building 305,2800 Lyngby. Denmark;

    CIMNE, Building Energy and Environment Croup, c/Dr Ulles 2, 08224 Terrassa, Spain;

    IMM, Technical University of Denmark, Richard Pedersen Plads, Building 305,2800 Lyngby. Denmark;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    BIPV systems; forced convection; grey-box modelling; parameter identification;

    机译:BIPV系统;强制对流灰箱建模;参数识别;
  • 入库时间 2022-08-18 00:10:01

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号