首页> 外文期刊>Emerging Topics in Computing, IEEE Transactions on >Optimizing Network Traffic for Spiking Neural Network Simulations on Densely Interconnected Many-Core Neuromorphic Platforms
【24h】

Optimizing Network Traffic for Spiking Neural Network Simulations on Densely Interconnected Many-Core Neuromorphic Platforms

机译:在密集互连的多核神经形态平台上优化神经网络仿真的网络流量

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper we present a new Partitioning and Placement methodology able to maps Spiking Neural Network on parallel neuromorphic platforms. This methodology improves scalability/reliability of Spiking Neural Network (SNN) simulations on many-core and densely interconnected platforms. SNNs mimic brain activity by emulating spikes sent between neuron populations. Many-core platforms are emerging computing targets that aim to achieve real-time SNN simulations. Neurons are mapped to parallel cores, and spikes are sent in the form of packets over the on-chip and off-chip network. However, the activity of neuron populations is heterogeneous and complex. Thus, achieving an efficient exploitation of platform resources is a challenge that often affects simulation scalability/reliability. To address this challenge, the proposed methodology uses customised SNN to profile the board bottlenecks and implements a SNN partitioning and placement (SNN-PP) algorithm for improving on-chip and off-chip communication efficiency. The cortical microcircuit SNN was simulated and performances of the developed SNN-PP algorithm were compared with performances of standard methods. These comparisons showed significant traffic reduction produced by the new method, that for some configurations reached up to 96X. Results demonstrate that it is possible to consistently reduce packet traffic and improve simulation scalability/reliability with an effective neuron placement.
机译:在本文中,我们提出了一种新的分区和放置方法,该方法能够在并行神经形态平台上绘制Spiking神经网络。这种方法提高了多核和密集互连平台上的尖刺神经网络(SNN)仿真的可伸缩性/可靠性。 SNN通过模拟神经元种群之间发送的尖峰来模拟大脑活动。许多核心平台是新兴的计算目标,旨在实现实时SNN模拟。神经元被映射到并行核,并且尖峰脉冲以包的形式通过片上和片外网络发送。但是,神经元种群的活动是异质的和复杂的。因此,有效利用平台资源是一个挑战,通常会影响仿真的可伸缩性/可靠性。为了解决这一挑战,所提出的方法使用定制的SNN来剖析电路板瓶颈,并实现了SNN分区和布局(SNN-PP)算法,以提高片上和片外通信效率。模拟了皮质微电路SNN,并将开发的SNN-PP算法的性能与标准方法的性能进行了比较。这些比较表明,新方法可以显着减少流量,对于某些配置,流量可以达到96倍。结果表明,通过有效的神经元放置,可以持续减少数据包流量并提高仿真的可伸缩性/可靠性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号