...
首页> 外文期刊>Electron Devices, IEEE Transactions on >Electronic Structure of InN/GaN Quantum Dots: Multimillion-Atom Tight-Binding Simulations
【24h】

Electronic Structure of InN/GaN Quantum Dots: Multimillion-Atom Tight-Binding Simulations

机译:InN / GaN量子点的电子结构:数百万原子的紧束缚模拟

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The theoretical calculation of the electronic structure of any constituent materials is the first step toward the interpretation and understanding of experimental data and reliable device design. This is essentially true for nanoscale devices where both the atomistic granularity of the underlying materials and the quantum-mechanical nature of charge carriers play critical roles in determining the overall device performance. In this paper, within a fully atomistic and quantum-mechanical framework, we investigate the electronic structure of wurtzite InN quantum dots (QDs) self-assembled on GaN substrates. The main objectives are threefold: 1) to explore the nature and the role of crystal atomicity, strain field, and piezoelectric and pyroelectric potentials in determining the energy spectrum and the wave functions; 2) to address the redshift in the ground state, the symmetry lowering and the nondegeneracy in the first excited state, and the strong band mixing in the overall conduction-band electronic states, which is a group of interrelated phenomena that has been revealed in recent spectroscopic analyses; and 3) to study the size dependence of the internal fields and its impact on the electronic structure as a whole. We also demonstrate the importance of 3-D atomistic material representation and the need for using realistically extended substrate and cap layers (multimillion-atom modeling) in studying the built-in structural and electric fields in these reduced dimensional QDs. The models used in this study are as follows: 1) valence-force-field Keating model for atomistic strain relaxation; 2) 20-band nearest neighbor sp 3 d 5 s* tight-binding model for the calculation of single-particle energy states; and 3) microscopically determined polarization constants in conjunction with an atomistic 3-D Poisson solver for the calculation of piezo- and pyroelectric contributions.
机译:任何构成材料的电子结构的理论计算是朝着解释和理解实验数据和可靠的器件设计的第一步。对于底层器件的原子粒度和电荷载流子的量子力学性质在决定整体器件性能方面都起关键作用的纳米级器件,这基本上是正确的。本文在完全原子化和量子力学的框架内,研究了自组装在GaN衬底上的纤锌矿InN量子点(QD)的电子结构。主要目标有三个方面:1)探索晶体原子性,应变场以及压电和热电势在确定能谱和波函数中的性质和作用; 2)解决基态的红移,第一激发态的对称性降低和非简并以及在整个导带电子态中的强带混合,这是最近发现的一组相互关联的现象光谱分析3)研究内部场的大小依赖性及其对整个电子结构的影响。我们还演示了3D原子材料表示的重要性,以及在研究这些降维QD中的内置结构和电场时使用逼真的扩展衬底和盖层(数百万个原子模型)的必要性。本研究使用的模型如下:1)原子应变松弛的价力场基廷模型; 2)20带最近邻sp 3 d 5 s *紧束缚模型,用于计算单粒子能态; 3)与原子3D泊松求解器结合使用显微镜确定的极化常数,以计算压电和热电贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号