...
首页> 外文期刊>Electron Devices, IEEE Transactions on >Ultrashort Pulse Detection and Response Time Analysis Using Plasma-Wave Terahertz Field-Effect Transistors
【24h】

Ultrashort Pulse Detection and Response Time Analysis Using Plasma-Wave Terahertz Field-Effect Transistors

机译:超短脉冲检测和响应时间分析等等离子体波太赫兹场效应晶体管

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We report on the response characteristics of plasmonic terahertz field-effect transistors (TeraFETs) fed with femtosecond and picosecond pulses. Varying the pulsewidth ( ${t}_{extit {pw}}$ ) from 10 −15 s to 10 −10 s under a constant input power condition revealed two distinctive pulse detection modes. In the short pulse mode ( ${t}_{extit {pw}} ll {L}/{s}$ , where ${L}$ is the gated channel length and ${s}$ is the plasma velocity), the source-to-drain voltage response is a sharp pulse oscillatory decay preceded by a delay time on the order of ${L}/{s}$ . The plasma wave travels along the channel like the shallow water wave with a relatively narrow wave package. In the long pulse mode ( ${t}_{extit {pw}} > {L}/{s}$ ), the response profile has two oscillatory decay processes and the propagation of plasma wave is analogous to an oscillating rod with one side fixed. The ultimate response time at the long pulse mode is significantly higher than that under the short pulse conditions. The detection conditions under the long pulse mode are close to the step response condition, and the response time conforms well to the analytical theory for the step function response. The simulated waveform agrees well with the measured pulse response. Our results show that the measurements of the pulse response enable the material parameter extraction from the pulse response data (including the effective mass, kinematic viscosity, and momentum relaxation time).
机译:我们报告了用Femtosecond和PicoSecond脉冲喂养的等离子体太赫兹场效应晶体管(TERAFET)的响应特性。改变脉冲宽度(<内联公式XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> < tex-math notation =“乳胶”> $ {t} $ )从10 -15 s到10 -10 s在恒定输入功率条件下显示出两个独特的脉冲检测模式。在短脉冲模式(<内联公式XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink” > $ {t} _ { textit {pw}} ll {l} / {s} $ ,其中<内联 - 公式XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> $ {l} $ 是门控通道长度和<内联公式xmlns:mml =”http://www.w3.org/1998/math/mathml“ XMLNS:XLink =“http://www.w3.org/1999/xlink”> $ {s} $ 是等离子体速度),源极到漏极电压响应是一个尖锐的脉冲振荡衰减,前面是<内联公式XMLNS:MML =“http://www.w3.org/1998/math/mathml的延迟时间“xmlns:xlink =”http://www.w3.org/1999/xlink“> $ {l} / {s} $ 。等离子波沿着沟道行进,如具有相对窄的波封装的浅水波。在长脉冲模式(<内联公式XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink” > $ {t} _ { textit {pw}}> {l} / {s} $ ),响应配置文件有两个振荡衰减过程和等离子体波的传播类似于固定的一侧的振荡杆。长脉冲模式下的最终响应时间明显高于短脉冲条件下的响应时间。长脉冲模式下的检测条件接近阶梯响应条件,并且响应时间符合对阶梯函数响应的分析理论。模拟波形与测量的脉冲响应吻合良好。我们的结果表明,脉冲响应的测量能够从脉冲响应数据(包括有效质量,运动粘度和动量松弛时间)来实现材料参数提取。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号