首页> 外文期刊>Electromagnetic Compatibility, IEEE Transactions on >Atom-Based RF Electric Field Metrology: From Self-Calibrated Measurements to Subwavelength and Near-Field Imaging
【24h】

Atom-Based RF Electric Field Metrology: From Self-Calibrated Measurements to Subwavelength and Near-Field Imaging

机译:基于原子的射频电场计量:从自校准测量到亚波长和近场成像

获取原文
获取原文并翻译 | 示例
           

摘要

We discuss a fundamentally new method for electric (E) field strength (V/m) metrology applicable to the near-field. This new approach is significantly different from currently used field measurement techniques in that it is based on the interaction of radio-frequency (RF) E-fields with Rydberg atoms (alkali atoms placed in a glass vapor cell that are excited optically to Rydberg states). The applied RF E-field alters the state of the atoms. The Rydberg atoms act like an RF-to-optical transducer, converting an RF E-field strength to an optical-frequency response. In this new approach, we employ the phenomena of electromagnetically induced transparency (EIT) and Autler-Townes splitting. The RF transition in the four-level atomic system causes a split of the EIT transmission spectrum of a probe laser into two peaks. This splitting is easily measured and is directly proportional to the applied RF E-field amplitude. The significant dipole response of Rydberg atoms enables this technique to make self-calibrating measurements over a large frequency band including 500 MHz to 500 GHz (and possibly up to 1 THz and down to 10s of megahertz). In this paper, we report on our results in the development of this metrology approach, including the first fiber-coupled vapor-cell for E-field measurements. We also discuss key applications, including self-calibrated measurements, millimeter-wave and sub-THz measurements, field mapping, and sub-wavelength and near-field imaging. We show results for mapping the fields inside vapor cells, for measuring the E-field distribution along the surface of a circuit board, and for measuring the near-field at the aperture in a cavity. We also discuss the uncertainties of this measurement technique.
机译:我们讨论了一种适用于近场的电场(E)场强(V / m)度量衡的根本新方法。这种新方法与当前使用的现场测量技术有很大不同,因为它基于射频(RF)电场与Rydberg原子(放置在玻璃蒸汽电池中的碱原子被光学激发到Rydberg态)的相互作用。 。施加的射频电场会改变原子的状态。 Rydberg原子的作用类似于RF到光的换能器,将RF电场强度转换为光频率响应。在这种新方法中,我们采用了电磁感应透明(EIT)和Autler-Townes分裂现象。四能级原子系统中的RF跃迁导致探测激光的EIT传输光谱分裂为两个峰值。这种分裂很容易测量,并且与施加的射频电场幅度成正比。 Rydberg原子的显着偶极响应使该技术能够在包括500 MHz至500 GHz(可能高达1 THz且低至10s的兆赫兹)的较大频带上进行自校准测量。在本文中,我们报告了这种计量方法的开发成果,其中包括首个用于电场测量的光纤耦合蒸气室。我们还将讨论关键应用,包括自校准测量,毫米波和亚太赫兹测量,场图以及亚波长和近场成像。我们展示了用于绘制蒸汽电池内部场,测量沿电路板表面的电场分布以及测量腔孔中近场的结果。我们还将讨论这种测量技术的不确定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号