...
首页> 外文期刊>Electric power systems research >Optimization of neural network parameters by Stochastic Fractal Search for dynamic state estimation under communication failure
【24h】

Optimization of neural network parameters by Stochastic Fractal Search for dynamic state estimation under communication failure

机译:通信故障下动态状态估计的随机分形搜索优化神经网络参数

获取原文
获取原文并翻译 | 示例
           

摘要

A powerful metaheuristic technique is proposed that uses a mathematical concept called Stochastic Fractal Search (SFS) to ensure fast convergence along with accuracy. This paper intends to determine the optimal set of multilayer perceptron neural network (MLP) parameters (weights and thresholds) to improve the performance of MLP by using the SFS technique. The SFS is used because of its effective search in finding the global minima and therefore, it avoids the MLP neural network trapped in local minima. The hybrid approach (MLP-SFS) is applied to solve the dynamic state estimation (DSE) problem at the filtering stage. DSE amalgamates forecasting procedure with measurement data to precisely assess the system state. The approach classifies the process into three stages. In the first stage, a short term hourly load forecasting is applied using support vector machine (STLF-SVM) for time series to forecast the unavailable load data due to communication failure from the previous hourly historical data load. The second stage constitutes an optimal power flow (OPF) that is used to determine the minimum cost generation dispatch to serve the given load and convert the obtained loads, and generations into measurement data. The third stage has a filtering process, which uses SFS technique to optimize the MLP neural network parameters (weights and thresholds) to estimate the system state. The hybrid MLP-SFS is used to find the optimal connection weights and thresholds for the MLP neural network. Following this, a simple backpropagation neural network (BPN) will adjust the final parameters. The approach is tested on IEEE 14-and 118-bus systems using realistic load patterns from the New York Independent System Operator (NYISO) under several scenarios of measurement error and communication failure. The mean absolute percentage error index of the system state (phase and magnitude voltage) is used to determine the accuracy of the approach (MLP-SFS). Results of the proposed approach (MLP-SFS) are compared with non-optimized MLP (random weights and thresholds) and other methods, such as, optimized MLP based on genetic algorithm (MLP-GA) and Particle Swarm Optimization (MLP-PSO) individually. The results indicate that the hybrid (MLP-SFS) increases the precision by about 20%-50% and reduces the computational time around by 30%-50%, which is good for real-time applications, such as, security assessment and contingency evaluation. Details of the models of generation and distribution level are not part of the state estimation in the high voltage transmission problems. (C) 2017 Elsevier B.V. All rights reserved.
机译:提出了一种强大的元启发式技术,该技术使用称为随机分形搜索(SFS)的数学概念来确保快速收敛和准确性。本文旨在通过使用SFS技术确定最佳的多层感知器神经网络(MLP)参数(权重和阈值)集,以提高MLP的性能。使用SFS是因为它可以有效地查找全局最小值,因此避免了陷入局部最小值的MLP神经网络。混合方法(MLP-SFS)用于解决滤波阶段的动态状态估计(DSE)问题。 DSE将预测程序与测量数据合并,以精确评估系统状态。该方法将过程分为三个阶段。在第一阶段,使用支持向量机(STLF-SVM)对时间序列应用短期每小时负荷预测,以预测由于以前的每小时历史数据负荷造成的通信故障而导致的不可用负荷数据。第二阶段构成最佳功率流(OPF),用于确定最小成本发电调度以服务给定负载并将所获得的负载转换为测量数据。第三阶段有一个过滤过程,该过程使用SFS技术优化MLP神经网络参数(权重和阈值)以估计系统状态。混合MLP-SFS用于为MLP神经网络找到最佳连接权重和阈值。之后,简单的反向传播神经网络(BPN)将调整最终参数。该方法已在来自14个系统的IEEE 14和118总线系统上使用来自纽约独立系统运营商(NYISO)的实际负载模式在测量错误和通信故障的几种情况下进行了测试。系统状态(相位和幅值电压)的平均绝对百分比误差指数用于确定逼近度(MLP-SFS)的准确性。将提议的方法(MLP-SFS)的结果与未优化的MLP(随机权重和阈值)以及其他方法进行比较,例如基于遗传算法(MLP-GA)和粒子群优化(MLP-PSO)的优化MLP。个别地。结果表明,混合(MLP-SFS)的精度提高了约20%-50%,计算时间减少了约30%-50%,这对于实时应用(例如安全评估和应急)非常有利评价。在高压输电问题中,发电和配电水平模型的细节不是状态估计的一部分。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号