...
首页> 外文期刊>Electric Power Components and Systems >Stochastic Multi-Objective Generation Dispatch
【24h】

Stochastic Multi-Objective Generation Dispatch

机译:随机多目标发电调度

获取原文
获取原文并翻译 | 示例

摘要

This article explores the use of genetic algorithm to search for the assigned weightage pattern of objectives to obtain the best compromised thermal power generation schedule in the multi-objective framework. The multi-objective problem is formulated considering non-commensurable objectives viz. operating cost, NO{sub}x emission, and variance of real, as well as reactive, power generation mismatch with explicit recognition of statistical uncertainties in the thermal power generation cost curves, emission curves, and power demands, which are considered random variables. The solution set of such formulated problems is non-inferior due to contradictions among the objectives taken. The generation of non-inferior solutions requires an enormous amount of computation time when the objectives are more than two. In this article, the weighting method is used to convert the multi-objective optimization problem into a scalar optimization problem. Scalar optimization problem is solved many times for a different set of weight pattern to generate non-inferior solutions. The weighting patterns are either presumed on the basis of the decision maker's intuition or simulated with suitable step size. Such a simulation procedure may fail to provide the decision maker with the non-inferior solution that actually corresponds to the best compromised solution by virtue of the step size chosen. Thus, scalar weights are searched by genetic algorithms in the non-inferior domain. Among the generated population of scalar weights that generate non-inferior solutions, the system operator chooses the population of weighting pattern that provides maximum satisfaction level from the membership function of participating objectives and is termed as fitness function. The goals/objectives of fuzzy nature can be quantified by defining their membership functions. The validity of the proposed method has been demonstrated on an 11 node IEEE system comprising of five generators. The result of the proposed method is compared with the interactive method in which weighting patterns are simulated by giving suitable variation to weights in a specific manner.
机译:本文探讨了使用遗传算法搜索目标的分配权重模式,以在多目标框架中获得最佳折衷的火力发电计划。考虑到不可衡量的目标,即提出了多目标问题。运营成本,NOx排放以及实际和无功发电不匹配的变化,并明确识别出火力发电成本曲线,排放曲线和电力需求中的统计不确定性,这些不确定性被视为随机变量。由于制定的目标之间存在矛盾,因此这些提出的问题的解决方案并不逊色。当目标超过两个时,非劣等解决方案的生成需要大量的计算时间。在本文中,使用加权方法将多目标优化问题转换为标量优化问题。对于一组不同的权重模式,可以多次解决标量优化问题,以生成非劣解。加权模式可以根据决策者的直觉来推测,也可以通过适当的步长进行模拟。这种模拟过程可能无法为决策者提供非劣等解决方案,该解决方案凭借所选步长实际上与最佳折衷解决方案相对应。因此,通过遗传算法在非劣域中搜索标量权重。在生成的非劣解的标量权重总体中,系统操作员从参与目标的隶属度函数中选择提供最大满意度的加权模式,称为适应度函数。模糊性质的目标可以通过定义其隶属度函数来量化。在由五个发生器组成的11节点IEEE系统上已证明了该方法的有效性。将该方法的结果与交互式方法进行了比较,在交互式方法中,通过以特定方式对权重进行适当的变化来模拟加权模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号