首页> 外文期刊>Ecological indicators >Successive projections algorithm-based three-band vegetation index for foliar phosphorus estimation
【24h】

Successive projections algorithm-based three-band vegetation index for foliar phosphorus estimation

机译:基于连续投影算法的三波段植被指数估算叶面磷

获取原文
获取原文并翻译 | 示例
           

摘要

Phosphorus (P) is essential for plant growth and development. Very few studies have reported the use of hyperspectral three-band vegetation indices (TBVIs) in foliar P estimation. Further, the optimal TBVI is generally chosen from millions of all possible band combinations. This study aimed to investigate resampling and two wavelength selection methods (genetic algorithm (GA) and successive projections algorithm (SPA)) in deriving TBVIs for foliar P estimation and further to compare the performances of the newly developed TBVIs and published VIs. A total of 137 field-based canopy hyperspectral reflectance (350-2500 nm) of Carex (C. cinerascens) were obtained and reduced to 1603 wavelengths due to spectral noises. Considering both the original and first derivative reflectance spectra, their resampled wavelengths and selected wavelengths by GA and SPA were employed to derive TBVIs. A total of 24 selected TBVI models were calibrated for foliar P estimation with the training dataset, and they were independently validated with the test dataset. The root mean square error of validation (RMSEvai), determination coefficient of validation (R-val(2)) and residual prediction deviation (RPD) values were calculated to evaluate the performance of each model. The results demonstrated that 5474, 1972 and 1.2 s in average was taken in calculating all possible TBVIs using resampling, GA and SPA, respectively. Two SPA-based TBVIs, i.e. (rho 760-rho 2387)/(rho 723-rho 2387) (rho lambda, original reflectance) and (rho'(728)-rho'(319) + 2 rho'(714))/(rho'(729)+ rho'(1319)- 2 rho(714)) (gx, first derivative reflectance), had the best model performances (na, = 0.680, RMSEvai = 0.040%, RPD = 1.75; R-val(2) = 0.692, RMSEval = 0.039%, RPD =1.80) in foliar P estimation among the 24 TBVIs. Compared with 15 published VIs (R-val(2)< 0.64, RPD < 1.64), the two SPA-based TBVIs exhibited better validation performances. We concluded that SPA has the great potential for TBVI derivation due to the reduction of computation time, and the use of SPA in TBVI derivation is recommended for NDVI derivation or other biochemical parameter estimation. (C) 2016 Elsevier Ltd. All rights reserved.
机译:磷对植物的生长和发育至关重要。很少有研究报道在叶面P估计中使用高光谱三波段植被指数(TBVI)。此外,通常从数以百万计的所有可能的频带组合中选择最佳的TBVI。本研究旨在研究重采样和两种波长选择方法(遗传算法(GA)和连续投影算法(SPA)),以推导用于叶面P估计的TBVI,并进一步比较新开发的TBVI和已发布VI的性能。总共获得了Carex(C. cinerascens)的137个基于场的冠层高光谱反射率(350-2500 nm),并且由于光谱噪声而减少到1603个波长。考虑到原始和一阶导数反射光谱,采用GA和SPA的重采样波长和选定波长来导出TBVI。使用训练数据集校准了总共24个选定的TBVI模型以进行叶面P估计,并使用测试数据集对它们进行了独立验证。计算验证的均方根误差(RMSEvai),验证的确定系数(R-val(2))和残余预测偏差(RPD)值,以评估每个模型的性能。结果表明,在使用重采样,GA和SPA分别计算所有可能的TBVI时,平均花费了5474、1972和1.2 s。两个基于SPA的TBVI,即(rho 760-rho 2387)/(rho 723-rho 2387)(rho lambda,原始反射率)和(rho'(728)-rho'(319)+ 2 rho'(714)) /(rho'(729)+ rho'(1319)-2 rho(714))(gx,一阶导数反射率),具有最佳的模型性能(na,= 0.680,RMSEvai = 0.040%,RPD = 1.75; R-在24个TBVI中的叶面P估计中,val(2)= 0.692,RMSEval = 0.039%,RPD = 1.80)。与15个已发布的VI(R-val(2)<0.64,RPD <1.64)相比,这两个基于SPA的TBVI表现出更好的验证性能。我们的结论是,由于计算时间的减少,SPA在TBVI推导方面具有巨大潜力,建议在SPA TBVI推导中使用SPA进行NDVI推导或其他生化参数估计。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Ecological indicators》 |2016年第8期|12-20|共9页
  • 作者单位

    Shenzhen Univ, Natl Adm Surveying Mapping & Geoinformat, Key Lab Geoenvironm Monitoring Coastal Zone, Shenzhen 518060, Peoples R China|Shenzhen Univ, Shenzhen Key Lab Spatial Temporal Smart Sensing &, Shenzhen 518060, Peoples R China|Shenzhen Univ, Coll Life & Marine Sci, Shenzhen 518060, Peoples R China;

    Shenzhen Univ, Natl Adm Surveying Mapping & Geoinformat, Key Lab Geoenvironm Monitoring Coastal Zone, Shenzhen 518060, Peoples R China|Shenzhen Univ, Shenzhen Key Lab Spatial Temporal Smart Sensing &, Shenzhen 518060, Peoples R China|Shenzhen Univ, Coll Life & Marine Sci, Shenzhen 518060, Peoples R China;

    Shenzhen Univ, Natl Adm Surveying Mapping & Geoinformat, Key Lab Geoenvironm Monitoring Coastal Zone, Shenzhen 518060, Peoples R China|Shenzhen Univ, Shenzhen Key Lab Spatial Temporal Smart Sensing &, Shenzhen 518060, Peoples R China;

    Shenzhen Univ, Natl Adm Surveying Mapping & Geoinformat, Key Lab Geoenvironm Monitoring Coastal Zone, Shenzhen 518060, Peoples R China|Shenzhen Univ, Shenzhen Key Lab Spatial Temporal Smart Sensing &, Shenzhen 518060, Peoples R China|Shenzhen Univ, Coll Life & Marine Sci, Shenzhen 518060, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Genetic algorithm; Hyperspectral remote sensing; Foliar phosphorus; Successive projections algorithm; Three-band vegetation index;

    机译:遗传算法;高光谱遥感;叶磷;连续投影算法;三波段植被指数;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号