...
首页> 外文期刊>Ecological Economics >The Water Footprint Of Energy From Biomass: A Quantitative Assessment And Consequences Of An Increasing Share Of Bio-energy In Energy Supply
【24h】

The Water Footprint Of Energy From Biomass: A Quantitative Assessment And Consequences Of An Increasing Share Of Bio-energy In Energy Supply

机译:来自生物质的能量的水足迹:定量评估和结果表明,生物能源在能源供应中所占份额的增加

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This paper assesses the water footprint (WF) of different primary energy carriers derived from biomass expressed as the amount of water consumed to produce a unit of energy (m~3/GJ). The paper observes large differences among the WFs for specific types of primary bio-energy carriers. The WF depends on crop type, agricultural production system and climate. The WF of average bio-energy carriers grown in the Netherlands is 24 m~3/GJ, in the US 58 m~3/GJ, in Brazil 61 m~3/GJ, and in Zimbabwe 143 m~3/GJ. The WF of bio-energy is much larger than the WF of fossil energy. For the fossil energy carriers, the WF increases in the following order: uranium (0.1 m~3/GJ), natural gas (0.1 m~3/GJ), coal (0.2 m~3/GJ), and finally crude oil (1.1 m~3/GJ). Renewable energy carriers show large differences in their WF. The WF for wind energy is negligible, for solar thermal energy 0.3 m~3/GJ, but for hydropower 22 m~3/GJ. Based on the average per capita energy use in western societies (100 GJ/capita/year), a mix from coal, crude oil, natural gas and uranium requires about 35 m~3/capita/year. If the same amount of energy is generated through the growth of biomass in a high productive agricultural system, as applied in the Netherlands, the WF is 2420 m~3. The WF of biomass is 70 to 400 times larger than the WF of the other primary energy carriers (excluding hydropower). The trend towards larger energy use in combination with an increasing contribution of energy from biomass will enlarge the need for fresh water. This causes competition with other claims, such as water for food.
机译:本文评估了源自生物质的不同主要能源载体的水足迹(WF),以产生单位能量(m〜3 / GJ)所消耗的水量表示。本文观察到特定类型的主要生物能源载体的WF之间存在很大差异。 WF取决于作物类型,农业生产系统和气候。荷兰生长的平均生物能源载体的WF为24 m〜3 / GJ,美国为58 m〜3 / GJ,巴西为61 m〜3 / GJ,津巴布韦为143 m〜3 / GJ。生物能源的WF远大于化石能源的WF。对于化石能源载体而言,WF的增加顺序如下:铀(0.1 m〜3 / GJ),天然气(0.1 m〜3 / GJ),煤炭(0.2 m〜3 / GJ),最后是原油( 1.1 m〜3 / GJ)。可再生能源载体的WF差异很大。风能的WF可以忽略不计,太阳能热能的WF可以忽略不计,水力发电的WF可以忽略不计,而水力发电的WF可以忽略不计,为22 m〜3 / GJ。根据西方社会的平均人均能源使用量(100 GJ /人/年),煤,原油,天然气和铀的混合需要约35 m〜3 /人/年。如果在高生产力的农业系统中通过生物量的增长产生相同量的能量(如荷兰所应用的那样),则WF为2420 m〜3。生物质的WF是其他主要能源载体(不包括水力发电)的WF的70至400倍。越来越多的能源使用趋势以及来自生物质的能源贡献不断增加,将增加对淡水的需求。这导致与其他主张(例如食物用水)竞争。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号