...
首页> 外文期刊>Earthquake Science >Rapid afterslip and short-term viscoelastic relaxation following the 2008 M W7.9 Wenchuan earthquake?
【24h】

Rapid afterslip and short-term viscoelastic relaxation following the 2008 M W7.9 Wenchuan earthquake?

机译:2008年M W 7.9汶川地震后快速滑移和短期粘弹性松弛?

获取原文
获取原文并翻译 | 示例

摘要

Significant postseismic deformation of the 2008 M W7.9 Wenchuan earthquake has been observed from GPS data of the first 14 days after the earthquake. The possible mechanisms for the rapid postseismic deformation are assumed to be afterslip on the earthquake rupture plane and viscoelastic relaxation of coseismiclly stress change in the lower crust or upper mantle. We firstly use the constrained least squares method to find an afterslip model which can fit the GPS data best. The afterslip model can explain near-field data very well but shows considerable discrepancies in fitting far-field data. To estimate the effect due to the viscoelastic relaxation in the lower crust, we then ignore the contribution from the afterslip and attempt to invert the viscosity structure beneath the Longmenshan fault where the Wenchuan earthquake occurred from the postseismic deformation data. For this purpose, we use a viscoelastic model with a 2D geometry based on the geological and seismological observations and the coseismic slip distribution derived from the coseismic GPS and InSAR data. By means of a grid search we find that the optimum viscosity is 9×1018 Pa·s for the middle-lower crust in the Chengdu Basin, 4×1017 Pa·s for the middle-lower crust in the Chuanxi Plateau and 7×1017 Pa·s for the low velocity zone in the Chuanxi plateau. The viscoelastic model explains the postseismic deformation observed in the far-field satisfactorily, but it is considerably worse than the afterslip model in fitting the near-fault data. It suggests therefore a hybrid model including both afterslip and relaxation effects. Since the viscoelastic model produces mainly the far-field surface deformation and has fewer degree of freedoms (three viscosity parameters) than the afterslip model with a huge number of source parameters, we fix the viscositiy structure as obtained before but redetermine the afterslip distribution using the residual data from the viscoelastic modeling. The redetermined afterslip distribution becomes physically more reasonable; it is more localized and exhibits a pattern spatially complementary with the coseismic rupture distribution. We conclude that the aseismic fault slip is responsible for the near-fault postseismic deformation, whereas the viscoelastic stress relaxation might be the major cause for the far-field postseismic deformation.
机译:从地震发生后的前14天的GPS数据中可以观察到2008年M W 7.9汶川地震的重大地震后变形。假定地震后快速变形的可能机制是地震破裂平面上的后滑和下地壳或上地幔的同震应力变化的粘弹性松弛。我们首先使用约束最小二乘法来找到最适合GPS数据的后滑模型。滑后模型可以很好地解释近场数据,但是在拟合远场数据时显示出相当大的差异。为了估算下地壳中的粘弹性松弛所产生的影响,我们将忽略后滑的贡献,并尝试根据地震后的变形数据将发生汶川地震的龙门山断裂带下的粘性结构反演。为此,我们基于地质和地震观测以及从同震GPS和InSAR数据得出的同震滑动分布,使用具有2D几何形状的粘弹性模型。通过网格搜索,发现成都盆地中下地壳的最佳黏度为9×1018 Pa·s,中下地壳的最佳黏度为4×1017 Pa·s川西高原低速带为7×1017 Pa·s。粘弹性模型令人满意地解释了在远场中观察到的地震后变形,但是在拟合近断层数据方面,它比后滑动模型差很多。因此,它提出了同时具有滑移和松弛效应的混合模型。由于粘弹性模型主要产生远场表面变形,并且比具有大量源参数的后滑动模型具有更少的自由度(三个粘度参数),因此我们固定了之前获得的粘性结构,但使用重新确定了后滑动分布来自粘弹性模型的剩余数据。重新确定的后滑分布在物理上变得更加合理;它更局限,并且表现出与同震破裂分布在空间上互补的模式。我们得出的结论是,地震断层滑动是造成近断层地震后变形的原因,而粘弹性应力松弛可能是造成远场地震后变形的主要原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号